Exploring the Caenorhabditis elegans and Drosophila melanogaster genomes to understand neuropeptide and peptidase function

2000 ◽  
Vol 28 (4) ◽  
pp. 464-469 ◽  
Author(s):  
D. Coates ◽  
R. Siviter ◽  
R. E. Isaac

Comparison of peptidase gene families in the newly released Drosophila melanogaster and Caenorhabditis elegans genomes highlights important differences in peptidase distributions with relevance to the evolution of both form and function in these two organisms and can help to identify the most appropriate model when using comparative studies relevant to the human condition.

2003 ◽  
Vol 4 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Thomas Blumenthal ◽  
Kathy Seggerson Gleason

Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2099-2117 ◽  
Author(s):  
M.C. Fishman ◽  
K.R. Chien

Our goal here is to set out the types of unitary decisions made by heart progenitor cells, from their appearance in the heart field until they form the simple heart tube. This provides a context to evaluate cell fate, lineage and, finally, morphogenetic decisions that configure global heart form and function. Some paradigms for cellular differentiation and for pattern generation may be borrowed from invertebrates, but neither Drosophila nor Caenorhabditis elegans suffice to unravel higher order decisions. Genetic analyses in mouse and zebrafish may provide one entrance to these pathways.


2020 ◽  
Vol 38 (1) ◽  
pp. 229-243
Author(s):  
Christian Rödelsperger ◽  
Annabel Ebbing ◽  
Devansh Raj Sharma ◽  
Misako Okumura ◽  
Ralf J Sommer ◽  
...  

Abstract Divergence of gene function and expression during development can give rise to phenotypic differences at the level of cells, tissues, organs, and ultimately whole organisms. To gain insights into the evolution of gene expression and novel genes at spatial resolution, we compared the spatially resolved transcriptomes of two distantly related nematodes, Caenorhabditis elegans and Pristionchus pacificus, that diverged 60–90 Ma. The spatial transcriptomes of adult worms show little evidence for strong conservation at the level of single genes. Instead, regional expression is largely driven by recent duplication and emergence of novel genes. Estimation of gene ages across anatomical structures revealed an enrichment of novel genes in sperm-related regions. This provides first evidence in nematodes for the “out of testis” hypothesis that has been previously postulated based on studies in Drosophila and mammals. “Out of testis” genes represent a mix of products of pervasive transcription as well as fast evolving members of ancient gene families. Strikingly, numerous novel genes have known functions during meiosis in Caenorhabditis elegans indicating that even universal processes such as meiosis may be targets of rapid evolution. Our study highlights the importance of novel genes in generating phenotypic diversity and explicitly characterizes gene origination in sperm-related regions. Furthermore, it proposes new functions for previously uncharacterized genes and establishes the spatial transcriptome of Pristionchus pacificus as a catalog for future studies on the evolution of gene expression and function.


Author(s):  
Patricia G. Arscott ◽  
Gil Lee ◽  
Victor A. Bloomfield ◽  
D. Fennell Evans

STM is one of the most promising techniques available for visualizing the fine details of biomolecular structure. It has been used to map the surface topography of inorganic materials in atomic dimensions, and thus has the resolving power not only to determine the conformation of small molecules but to distinguish site-specific features within a molecule. That level of detail is of critical importance in understanding the relationship between form and function in biological systems. The size, shape, and accessibility of molecular structures can be determined much more accurately by STM than by electron microscopy since no staining, shadowing or labeling with heavy metals is required, and there is no exposure to damaging radiation by electrons. Crystallography and most other physical techniques do not give information about individual molecules.We have obtained striking images of DNA and RNA, using calf thymus DNA and two synthetic polynucleotides, poly(dG-me5dC)·poly(dG-me5dC) and poly(rA)·poly(rU).


Sign in / Sign up

Export Citation Format

Share Document