scholarly journals Living in the matrix: assembly and control of Vibrio cholerae biofilms

2015 ◽  
Vol 13 (5) ◽  
pp. 255-268 ◽  
Author(s):  
Jennifer K. Teschler ◽  
David Zamorano-Sánchez ◽  
Andrew S. Utada ◽  
Christopher J. A. Warner ◽  
Gerard C. L. Wong ◽  
...  
1994 ◽  
Vol 269 (10) ◽  
pp. 7651-7657
Author(s):  
K.Y. Moon ◽  
K.S. Shin ◽  
W.K. Song ◽  
C.H. Chung ◽  
D.B. Ha ◽  
...  

2000 ◽  
Vol 113 (3) ◽  
pp. 493-506 ◽  
Author(s):  
C.M. Klass ◽  
J.R. Couchman ◽  
A. Woods

Extracellular matrix (ECM) deposition and organization is maintained by transmembrane signaling and integrins play major roles. We now show that a second transmembrane component, syndecan-2 heparan sulfate proteoglycan, is pivotal in matrix assembly. Chinese Hamster Ovary (CHO) cells were stably transfected with full length (S2) or truncated syndecan-2 lacking the C-terminal 14 amino acids of the cytoplasmic domain (S2deltaS). No differences in the amount of matrix assembly were noted with S2 cells, but those expressing S2deltaS could not assemble laminin or fibronectin into a fibrillar matrix. The loss of matrix formation was not caused by a failure to synthesize or externalize ECM components as determined by metabolic labeling or due to differences in surface expression of alpha5 or beta1 integrin. The matrix assembly defect was at the cell surface, since S2deltaS cells also lost the ability to rearrange laminin or fibronectin substrates into fibrils and to bind exogenous fibronectin. Transfection of activated alphaIIbalphaLdeltabeta3 integrin into alpha(5)-deficient CHO B2 cells resulted in reestablishment of the previously lost fibronectin matrix. However, cotransfection of this cell line with S2deltaS could override the presence of activated integrins. These results suggest a regulatory role for syndecan-2 in matrix assembly, along with previously suggested roles for activated integrins.


Author(s):  
Olha Sushchenko

In this chapter, the author presents the problems of design of the robust automated system for stabilization and control of platforms with aircraft observation equipment. The mathematical model of the triaxial stabilized platform is developed. The procedure of synthesis of robust stabilization system based on robust structural synthesis is represented. The above-mentioned procedure uses loop-shaping approach and method of the mixed sensitivity. The matrix weighting transfer functions are obtained. The optimization programs in MatLab are developed. The developed procedures are approved based on the results of simulation by means of the appropriate Simulink model. The obtained results can be useful for unmanned aerial vehicles and aircraft of special aviation, which are used for monitoring technical objects and aerial photography. The technical contributions are procedures of the robust controller design represented as the flowchart. The proposed approach is validated by application of the theoretical suppositions to the concrete example and appropriate simulation results.


1987 ◽  
Vol 104 (3) ◽  
pp. 601-610 ◽  
Author(s):  
P J McKeown-Longo ◽  
C A Etzler

Previous studies have suggested that the assembly of fibronectin into the extracellular matrix of cultured fibroblasts is mediated by specific matrix assembly receptors that recognize a binding site in the amino terminus of the fibronectin molecule (McKeown-Longo, P.J., and D.F. Mosher, 1985, J. Cell Biol., 100:364-374). In the presence of dexamethasone, human fibrosarcoma cells (HT-1080) acquired the ability to specifically bind exogenous plasma fibronectin and incorporate it into a detergent-insoluble extracellular matrix. Dexamethasone-induced fibronectin binding to HT-1080 cells was time dependent, dose dependent, and inhibited by cycloheximide. Saturation binding curves indicated that dexamethasone induced the appearance of 7.7 X 10(4) matrix assembly receptors per cell. The induced receptors exhibited a dissociation constant (KD) for soluble fibronectin of 5.0 X 10(-8) M. In parallel experiments, normal fibroblasts exhibited 4.1 X 10(5) receptors (KD = 5.3 X 10(-8) M) per cell. In the presence of cycloheximide, the induced fibronectin-binding activity on HT-1080 cells returned to uninduced levels within 12 h. In contrast, fibronectin-binding activity on normal fibroblasts was stable in the presence of cycloheximide for up to 54 h. The first-order rate constant (Kt = 2.07 X 10(-4) min-1) for the transfer of receptor-bound fibronectin to extracellular matrix was four- to fivefold less than that for normal fibroblasts (Kt = 1.32 X 10(-3) min-1). Lactoperoxidase-catalyzed iodination of HT-1080 monolayers indicated that a 48,000-mol-wt cell surface protein was enhanced with dexamethasone. The results from these experiments suggest that dexamethasone induces functional matrix assembly receptors on the surface of HT-1080 cells; however, the rate of incorporation of fibronectin into the matrix is much slower than that of normal fibroblasts.


2010 ◽  
Vol 654-656 ◽  
pp. 2759-2762
Author(s):  
Manabu Mizutani ◽  
Kenji Matsuda ◽  
Kazuya Makino ◽  
Katsuhiko Nishimura ◽  
Tokimasa Kawabata ◽  
...  

Superconducting wires have been applied for the fabrication of superconducting magnets in nuclear magneto-resonance (NMR), Magneto-resonance imaging (MRI) and so on. MgB2 has the highest critical temperature of superconducting transition (TC39K) among intermetallic compound superconductive materials. This means that MgB2 Superconductive wire doesn’t need expensive liquid He for cooling. We used the original method of the three-dimensional penetration casting (3DPC) in this laboratory to fabricate the MgB2/Al composite. Our 3DPC method for fabricating composite materials can disperse particles in the matrix homogenously without any aggregation and control volume fractions of composites within the range of 4 – 40%, even when particle size is less than 1 m. Thus, these composite materials can be processed by machining, extrusion and rolling. In the composite material we made, MgB2 particles dispersed to the Al matrix uniformly. The TC was determined by electrical resistivity and magnetization to be about 37 – 39K. We succeeded in extruding MgB2/Al composite billet to 1mm wire. Microstructures of these samples have been confirmed by SEM method. MgB2/Al composite billet and extruded wire were showed there no cracks inside the materials.


2007 ◽  
Vol 178 (4) ◽  
pp. 701-711 ◽  
Author(s):  
Chloé C. Féral ◽  
Andries Zijlstra ◽  
Eugene Tkachenko ◽  
Gerald Prager ◽  
Margaret L. Gardel ◽  
...  

Integrin-dependent assembly of the fibronectin (Fn) matrix plays a central role in vertebrate development. We identify CD98hc, a membrane protein, as an important component of the matrix assembly machinery both in vitro and in vivo. CD98hc was not required for biosynthesis of cellular Fn or the maintenance of the repertoire or affinity of cellular Fn binding integrins, which are important contributors to Fn assembly. Instead, CD98hc was involved in the cell's ability to exert force on the matrix and did so by dint of its capacity to interact with integrins to support downstream signals that lead to activation of RhoA small GTPase. Thus, we identify CD98hc as a membrane protein that enables matrix assembly and establish that it functions by interacting with integrins to support RhoA-driven contractility. CD98hc expression can vary widely; our data show that these variations in CD98hc expression can control the capacity of cells to assemble an Fn matrix, a process important in development, wound healing, and tumorigenesis.


Aquaculture ◽  
2017 ◽  
Vol 479 ◽  
pp. 69-74 ◽  
Author(s):  
Xiaojian Gao ◽  
Nan Chen ◽  
Yue Zhang ◽  
Xiaojun Zhang ◽  
Xuwen Bing

2019 ◽  
Vol 30 (17) ◽  
pp. 2218-2226 ◽  
Author(s):  
Jared T. Saunders ◽  
Jean E. Schwarzbauer

The extracellular matrix (ECM) proteins fibronectin (FN) and type I collagen (collagen I) are codistributed in many tissues, and collagens have been shown to depend on an FN matrix for fibrillogenesis. Microscopic analysis of a fibroblast ECM showed colocalization of procollagen I with FN fibrils, and proteolytic cleavage of procollagen to initiate fibril formation was significantly reduced with inhibition of FN matrix assembly. We examined the role of FN matrix in procollagen processing by the C-propeptide proteinase bone morphogenetic protein 1 (BMP-1). We found that BMP-1 binds to a cell-assembled ECM in a dose-dependent manner and that, like procollagen, BMP-1 colocalizes with FN fibrils in the matrix microenvironment. Binding studies with FN fragments identified a binding site in FN’s primary heparin-binding domain. In solution, BMP-1–FN interactions and BMP-1 cleavage of procollagen I were both enhanced by the presence of heparin, suggesting a role for heparin in complex formation during proteolysis. Indeed, addition of heparin enhanced the rate of procollagen cleavage by matrix-bound BMP-1. Our results show that matrix localization of this proteinase facilitates the initiation of collagen assembly and suggest a model in which FN matrix and associated heparan sulfate act as a scaffold to organize enzyme and substrate for procollagen processing.


Sign in / Sign up

Export Citation Format

Share Document