scholarly journals A candidate molecule for the matrix assembly receptor to the N-terminal 29-kDa fragment of fibronectin in chick myoblasts.

1994 ◽  
Vol 269 (10) ◽  
pp. 7651-7657
Author(s):  
K.Y. Moon ◽  
K.S. Shin ◽  
W.K. Song ◽  
C.H. Chung ◽  
D.B. Ha ◽  
...  
2000 ◽  
Vol 113 (3) ◽  
pp. 493-506 ◽  
Author(s):  
C.M. Klass ◽  
J.R. Couchman ◽  
A. Woods

Extracellular matrix (ECM) deposition and organization is maintained by transmembrane signaling and integrins play major roles. We now show that a second transmembrane component, syndecan-2 heparan sulfate proteoglycan, is pivotal in matrix assembly. Chinese Hamster Ovary (CHO) cells were stably transfected with full length (S2) or truncated syndecan-2 lacking the C-terminal 14 amino acids of the cytoplasmic domain (S2deltaS). No differences in the amount of matrix assembly were noted with S2 cells, but those expressing S2deltaS could not assemble laminin or fibronectin into a fibrillar matrix. The loss of matrix formation was not caused by a failure to synthesize or externalize ECM components as determined by metabolic labeling or due to differences in surface expression of alpha5 or beta1 integrin. The matrix assembly defect was at the cell surface, since S2deltaS cells also lost the ability to rearrange laminin or fibronectin substrates into fibrils and to bind exogenous fibronectin. Transfection of activated alphaIIbalphaLdeltabeta3 integrin into alpha(5)-deficient CHO B2 cells resulted in reestablishment of the previously lost fibronectin matrix. However, cotransfection of this cell line with S2deltaS could override the presence of activated integrins. These results suggest a regulatory role for syndecan-2 in matrix assembly, along with previously suggested roles for activated integrins.


2015 ◽  
Vol 13 (5) ◽  
pp. 255-268 ◽  
Author(s):  
Jennifer K. Teschler ◽  
David Zamorano-Sánchez ◽  
Andrew S. Utada ◽  
Christopher J. A. Warner ◽  
Gerard C. L. Wong ◽  
...  

1987 ◽  
Vol 104 (3) ◽  
pp. 601-610 ◽  
Author(s):  
P J McKeown-Longo ◽  
C A Etzler

Previous studies have suggested that the assembly of fibronectin into the extracellular matrix of cultured fibroblasts is mediated by specific matrix assembly receptors that recognize a binding site in the amino terminus of the fibronectin molecule (McKeown-Longo, P.J., and D.F. Mosher, 1985, J. Cell Biol., 100:364-374). In the presence of dexamethasone, human fibrosarcoma cells (HT-1080) acquired the ability to specifically bind exogenous plasma fibronectin and incorporate it into a detergent-insoluble extracellular matrix. Dexamethasone-induced fibronectin binding to HT-1080 cells was time dependent, dose dependent, and inhibited by cycloheximide. Saturation binding curves indicated that dexamethasone induced the appearance of 7.7 X 10(4) matrix assembly receptors per cell. The induced receptors exhibited a dissociation constant (KD) for soluble fibronectin of 5.0 X 10(-8) M. In parallel experiments, normal fibroblasts exhibited 4.1 X 10(5) receptors (KD = 5.3 X 10(-8) M) per cell. In the presence of cycloheximide, the induced fibronectin-binding activity on HT-1080 cells returned to uninduced levels within 12 h. In contrast, fibronectin-binding activity on normal fibroblasts was stable in the presence of cycloheximide for up to 54 h. The first-order rate constant (Kt = 2.07 X 10(-4) min-1) for the transfer of receptor-bound fibronectin to extracellular matrix was four- to fivefold less than that for normal fibroblasts (Kt = 1.32 X 10(-3) min-1). Lactoperoxidase-catalyzed iodination of HT-1080 monolayers indicated that a 48,000-mol-wt cell surface protein was enhanced with dexamethasone. The results from these experiments suggest that dexamethasone induces functional matrix assembly receptors on the surface of HT-1080 cells; however, the rate of incorporation of fibronectin into the matrix is much slower than that of normal fibroblasts.


2007 ◽  
Vol 178 (4) ◽  
pp. 701-711 ◽  
Author(s):  
Chloé C. Féral ◽  
Andries Zijlstra ◽  
Eugene Tkachenko ◽  
Gerald Prager ◽  
Margaret L. Gardel ◽  
...  

Integrin-dependent assembly of the fibronectin (Fn) matrix plays a central role in vertebrate development. We identify CD98hc, a membrane protein, as an important component of the matrix assembly machinery both in vitro and in vivo. CD98hc was not required for biosynthesis of cellular Fn or the maintenance of the repertoire or affinity of cellular Fn binding integrins, which are important contributors to Fn assembly. Instead, CD98hc was involved in the cell's ability to exert force on the matrix and did so by dint of its capacity to interact with integrins to support downstream signals that lead to activation of RhoA small GTPase. Thus, we identify CD98hc as a membrane protein that enables matrix assembly and establish that it functions by interacting with integrins to support RhoA-driven contractility. CD98hc expression can vary widely; our data show that these variations in CD98hc expression can control the capacity of cells to assemble an Fn matrix, a process important in development, wound healing, and tumorigenesis.


2019 ◽  
Vol 30 (17) ◽  
pp. 2218-2226 ◽  
Author(s):  
Jared T. Saunders ◽  
Jean E. Schwarzbauer

The extracellular matrix (ECM) proteins fibronectin (FN) and type I collagen (collagen I) are codistributed in many tissues, and collagens have been shown to depend on an FN matrix for fibrillogenesis. Microscopic analysis of a fibroblast ECM showed colocalization of procollagen I with FN fibrils, and proteolytic cleavage of procollagen to initiate fibril formation was significantly reduced with inhibition of FN matrix assembly. We examined the role of FN matrix in procollagen processing by the C-propeptide proteinase bone morphogenetic protein 1 (BMP-1). We found that BMP-1 binds to a cell-assembled ECM in a dose-dependent manner and that, like procollagen, BMP-1 colocalizes with FN fibrils in the matrix microenvironment. Binding studies with FN fragments identified a binding site in FN’s primary heparin-binding domain. In solution, BMP-1–FN interactions and BMP-1 cleavage of procollagen I were both enhanced by the presence of heparin, suggesting a role for heparin in complex formation during proteolysis. Indeed, addition of heparin enhanced the rate of procollagen cleavage by matrix-bound BMP-1. Our results show that matrix localization of this proteinase facilitates the initiation of collagen assembly and suggest a model in which FN matrix and associated heparan sulfate act as a scaffold to organize enzyme and substrate for procollagen processing.


Author(s):  
Alan C. Rapraeger ◽  
Joy E. Koda ◽  
Merton Bernfield

The shape of adherent cells is the product of two scaffolds: the Intracellular cytoskeleton and the surrounding extracellular matrix. During epithelial morphogenesis, changes In cell shape require modifications in both of these structures. Studies of the components of the cytoskeleton, their Inter-relationships and their response to cell motility and shape changes have provided rich Information about how changes in cytoskeletal organization may take place. Less is known about how extracellular molecules interact with one another, and particularly how the cell regulates these matrix interactions. As an approach to this problem, we are investigating the structure and function of heparan sulfate proteoglycans in mammary eplthellal cells, molecules that are able to bind a variety of matrix molecules, and therefore may have an organizational role in extracellular matrix assembly. Additionally, some are Integrally associated with the plasma membrane, thereby potentially anchoring the cell to the matrix.


1997 ◽  
Vol 110 (12) ◽  
pp. 1413-1419 ◽  
Author(s):  
C.Y. Chung ◽  
H.P. Erickson

We have investigated the role of glycosaminoglycans in fibronectin matrix assembly and the incorporation of tenascin-C into matrix fibrils. Chinese hamster ovary cell mutants with a total block in heparan and chondroitin sulfate production failed to assemble a fibronectin matrix, and incorporated no tenascin-C. Another mutant with reduced heparan sulfate produced a normal fibronectin matrix but failed to incorporate tenascin-C. Excess soluble glycosaminoglycans inhibited the binding of tenascin-C to purified fibronectin in ELISA, and completely blocked incorporation into matrix fibrils. Treating cultured cells with xyloside, which interferes with glycosaminoglycan attachment to proteoglycans, also completely blocked their ability to incorporate tenascin-C into matrix fibrils. We conclude that proteoglycans bound to fibronectin fibrils play a major role in binding tenascin-C to these fibrils. We examined more closely the large heparan sulfate proteoglycan, perlecan, and found that it co-localizes with tenascin-C and fibronectin in the matrix. The perlecan binding site in tenascin-C was mapped to the fibronectin type III domains 3–5, but this binding was strongly enhanced for the small splice variant, which is the major form incorporated into the matrix. Apparently when the alternative splice segment is inserted after domain 5 it inhibits perlecan binding. Thus heparan sulfate glycosaminoglycans, and perlecan in particular, may play a role in incorporation of the small splice variant of tenascin-C into fibronectin matrix fibrils.


1995 ◽  
Vol 108 (3) ◽  
pp. 907-915 ◽  
Author(s):  
K. Ichihara-Tanaka ◽  
K. Titani ◽  
K. Sekiguchi

A truncated form of fibronectin consisting of the N-terminal 70 kDa and C-terminal 37 kDa regions, designated r70F2, retained the ability to assemble into the extracellular matrix when expressed in cultured fibroblasts (Ichihara-Tanaka et al. (1992) FEBS Lett. 299, 155–158). To elucidate the role of the C-terminal 37 kDa region in fibronectin matrix assembly, we expressed a panel of mutant forms of r70F2 with various deletions and amino acid substitutions in mouse L cells. Although substitution of Ser for two Cys residues in the C-terminal dimerforming segment led to a marked reduction in the matrix assembly activity of r70F2, the resulting monomeric r70F2 still retained a low, but significant activity to assemble into the matrix. Neither the N-terminal 70 kDa nor the C-terminal 37 kDa regions, when expressed as monomeric forms, exhibited any residual activity, suggesting that the core domain of the 37 kDa region consisting of III15 and I10 through I12 modules, termed Fib2 domain, is actively involved in the matrix assembly of r70F2. In support of the role of Fib2 domain, the proteolytic fragment derived from the 37 kDa region inhibited the assembly of r70F2. Furthermore, en bloc deletion of the Fib2 domain or deletion of the I10 through I12 modules from r70F2 resulted in a marked decrease of the matrix assembly activity.(ABSTRACT TRUNCATED AT 250 WORDS)


Nano Research ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 3069-3074 ◽  
Author(s):  
Maria Chiara Spadaro ◽  
Junlei Zhao ◽  
William D. Terry ◽  
Jian Liu ◽  
Feng Yin ◽  
...  

Abstract The matrix assembly cluster source (MACS) represents a bridge between conventional instruments for cluster beam deposition (CBD) and the level of industrial production. The method is based on Ar+ ion sputtering of a pre-condensed Ar-M matrix (where M, is typically a metal such as Ag). Each Ar+ ion produces a collision cascade and thus the formation of metal clusters is in the matrix, which are then sputtered out. Here we present an experimental and computational investigation of the cluster emission process, specifically its dependence on the Ar+ ion angle of incidence and the cluster emission angle. We find the incidence angle strongly influences the emerging cluster flux, which is assigned to the spatial location of the deposited primary ion energy relative to the cluster into the matrix. We also found an approximately constant angle between the incident ion beam and the peak in the emitted cluster distribution, with value between 99° and 109°.


Sign in / Sign up

Export Citation Format

Share Document