scholarly journals Identification of lineage-specific gene family expansions in a database of gene families

Author(s):  
Avril Coghlan ◽  
Diogo Ribeiro ◽  
Avril Coghlan ◽  
Bhavana Harsha ◽  
Matthew Berriman
2016 ◽  
Author(s):  
Václav Janoušek ◽  
Christina M Laukaitis ◽  
Alexey Yanchukov ◽  
Robert Karn

We explored genome-wide patterns of RT content surrounding lineage-specific gene family expansions in the human and mouse genomes. Our results suggest that the size of a gene family is an important predictor of the RT distribution in close proximity to the family members. The distribution differs considerably between the three most common RT classes (LINEs, LTRs and SINEs). LINEs and LTRs tend to be more abundant around genes of multi-copy gene families, whereas SINEs tend to be depleted around such genes. Detailed analysis of the distribution and diversity of LINEs and LTRs with respect to gene family size suggests that each has a distinct involvement in gene family expansion. LTRs are associated with open chromatin sites surrounding the gene families, supporting their involvement in gene regulation, whereas LINEs may play a structural role, promoting gene duplication. This suggests that gene family expansions, especially in the mouse genome, might undergo two phases, the first is characterized by elevated deposition of LTRs and their utilization in reshaping gene regulatory networks. The second phase is characterized by rapid gene family expansion due to continuous accumulation of LINEs and it appears that, in some instances at least, this could become a runaway process. We provide an example in which this has happened and we present a simulation supporting the possibility of the runaway process. Our observations also suggest that specific differences exist in this gene family expansion process between human and mouse genomes.


2020 ◽  
Vol 37 (9) ◽  
pp. 2584-2600 ◽  
Author(s):  
Bryan D Clifton ◽  
Jamie Jimenez ◽  
Ashlyn Kimura ◽  
Zeinab Chahine ◽  
Pablo Librado ◽  
...  

Abstract Gene families underlie genetic innovation and phenotypic diversification. However, our understanding of the early genomic and functional evolution of tandemly arranged gene families remains incomplete as paralog sequence similarity hinders their accurate characterization. The Drosophila melanogaster-specific gene family Sdic is tandemly repeated and impacts sperm competition. We scrutinized Sdic in 20 geographically diverse populations using reference-quality genome assemblies, read-depth methodologies, and qPCR, finding that ∼90% of the individuals harbor 3–7 copies as well as evidence of population differentiation. In strains with reliable gene annotations, copy number variation (CNV) and differential transposable element insertions distinguish one structurally distinct version of the Sdic region per strain. All 31 annotated copies featured protein-coding potential and, based on the protein variant encoded, were categorized into 13 paratypes differing in their 3′ ends, with 3–5 paratypes coexisting in any strain examined. Despite widespread gene conversion, the only copy present in all strains has functionally diverged at both coding and regulatory levels under positive selection. Contrary to artificial tandem duplications of the Sdic region that resulted in increased male expression, CNV in cosmopolitan strains did not correlate with expression levels, likely as a result of differential genome modifier composition. Duplicating the region did not enhance sperm competitiveness, suggesting a fitness cost at high expression levels or a plateau effect. Beyond facilitating a minimally optimal expression level, Sdic CNV acts as a catalyst of protein and regulatory diversity, showcasing a possible evolutionary path recently formed tandem multigene families can follow toward long-term consolidation in eukaryotic genomes.


2019 ◽  
Vol 116 (6) ◽  
pp. 2165-2174 ◽  
Author(s):  
Tao Zhao ◽  
M. Eric Schranz

A comprehensive analysis of relative gene order, or microsynteny, can provide valuable information for understanding the evolutionary history of genes and genomes, and ultimately traits and species, across broad phylogenetic groups and divergence times. We have used our network-based phylogenomic synteny analysis pipeline to first analyze the overall patterns and major differences between 87 mammalian and 107 angiosperm genomes. These two important groups have both evolved and radiated over the last ∼170 MYR. Secondly, we identified the genomic outliers or “rebel genes” within each clade. We theorize that rebel genes potentially have influenced trait and lineage evolution. Microsynteny networks use genes as nodes and syntenic relationships between genes as edges. Networks were decomposed into clusters using the Infomap algorithm, followed by phylogenomic copy-number profiling of each cluster. The differences in syntenic properties of all annotated gene families, including BUSCO genes, between the two clades are striking: most genes are single copy and syntenic across mammalian genomes, whereas most genes are multicopy and/or have lineage-specific distributions for angiosperms. We propose microsynteny scores as an alternative and complementary metric to BUSCO for assessing genome assemblies. We further found that the rebel genes are different between the two groups: lineage-specific gene transpositions are unusual in mammals, whereas single-copy highly syntenic genes are rare for flowering plants. We illustrate several examples of mammalian transpositions, such as brain-development genes in primates, and syntenic conservation across angiosperms, such as single-copy genes related to photosynthesis. Future experimental work can test if these are indeed rebels with a cause.


2013 ◽  
Vol 16 (5) ◽  
pp. 605-617 ◽  
Author(s):  
Andrew E Allen ◽  
Lisa Zeigler Allen ◽  
John P McCrow

2008 ◽  
Vol 25 (3) ◽  
pp. 591-602 ◽  
Author(s):  
Federico G. Hoffmann ◽  
Juan C. Opazo ◽  
Jay F. Storz

2018 ◽  
Vol 10 (6) ◽  
pp. 1554-1572 ◽  
Author(s):  
Hélène Boulain ◽  
Fabrice Legeai ◽  
Endrick Guy ◽  
Stéphanie Morlière ◽  
Nadine E Douglas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document