scholarly journals MATRIEX imaging: multiarea two-photon real-time in vivo explorer

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Mengke Yang ◽  
Zhenqiao Zhou ◽  
Jianxiong Zhang ◽  
Shanshan Jia ◽  
Tong Li ◽  
...  

AbstractTwo-photon laser scanning microscopy has been extensively applied to study in vivo neuronal activity at cellular and subcellular resolutions in mammalian brains. However, the extent of such studies is typically confined to a single functional region of the brain. Here, we demonstrate a novel technique, termed the multiarea two-photon real-time in vivo explorer (MATRIEX), that allows the user to target multiple functional brain regions distributed within a zone of up to 12 mm in diameter, each with a field of view (FOV) of ~200 μm in diameter, thus performing two-photon Ca2+ imaging with single-cell resolution in all of the regions simultaneously. For example, we demonstrate real-time functional imaging of single-neuron activities in the primary visual cortex, primary motor cortex and hippocampal CA1 region of mice in both anesthetized and awake states. A unique advantage of the MATRIEX technique is the configuration of multiple microscopic FOVs that are distributed in three-dimensional space over macroscopic distances (>1 mm) both laterally and axially but that are imaged by a single conventional laser scanning device. In particular, the MATRIEX technique can be effectively implemented as an add-on optical module for an existing conventional single-beam-scanning two-photon microscope without requiring any modification to the microscope itself. Thus, the MATRIEX technique can be readily applied to substantially facilitate the exploration of multiarea neuronal activity in vivo for studies of brain-wide neural circuit function with single-cell resolution.

2019 ◽  
Author(s):  
Mengke Yang ◽  
Zhenqiao Zhou ◽  
Jianxiong Zhang ◽  
Tong Li ◽  
Jiangheng Guan ◽  
...  

Two-photon laser scanning microscopy, originally developed since 1990s1, has been widely applied for biomedical research in recent decades, particularly popular among neuroscientists for studying neural functions in vivo2. However, it is typically restricted to one imaging area that is orthogonal to the optical axis. Here, we demonstrate a novel multi-axis optical conjugation method that enables two-photon imaging at single-cell resolution simultaneously in multiple areas at different depths, each of which could have a view diameter of ~200 μm and could be largely freely targeted within a zone up to 12-mm diameter. For example, we show simultaneous imaging of neuronal activities in the primary visual cortex (V1), the primary motor cortex (M1) and the hippocampal CA1 region of awake mice. This method can be readily implemented on a single conventional two-photon microscope to enable multi-area exploration of neuronal activities in vivo.


2016 ◽  
Author(s):  
Rongwen Lu ◽  
Wenzhi Sun ◽  
Yajie Liang ◽  
Aaron Kerlin ◽  
Jens Bierfeld ◽  
...  

Neurons and neural networks often extend hundreds to thousands of micrometers in three dimensions. To capture all the calcium transients associated with their activity, we need volume imaging methods with sub-second temporal resolution. Such speed is challenging for conventional two-photon laser scanning microscopy (2PLSM) to achieve, because of its dependence on serial focal scanning in 3D and the limited brightness of indicators. Here we present an optical module that can be easily integrated into standard 2PLSMs to generate an axially elongated Bessel focus. Scanning the Bessel focus in 2D turned frame rate into volume rate and enabled video-rate volumetric imaging. Using Bessel foci designed to maintain synaptic-level lateral resolution in vivo, we demonstrated the power of this approach in enabling discoveries for neurobiology by imaging the calcium dynamics of volumes of neurons and synapses in fruit flies, zebrafish larvae, mice, and ferrets in vivo.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2011 ◽  
Vol 106 (11) ◽  
pp. 939-946 ◽  
Author(s):  
Mirjam oude Egbrink ◽  
Viviane Heijnen ◽  
Remco Megens ◽  
Wim Engels ◽  
Hans Vink ◽  
...  

SummaryThe endothelial glycocalyx (EG), the luminal cover of endothelial cells, is considered to be atheroprotective. During atherogenesis, platelets adhere to the vessel wall, possibly triggered by simultaneous EG modulation. It was the objective of this study to investigate both EG thickness and platelet-vessel wall interactions during atherogenesis in the same experimental model. Intravital fluorescence microscopy was used to study platelet-vessel wall interactions in vivo in common carotid arteries and bifurcations of C57bl6/J (B6) and apolipoprotein E knock-out (ApoE-/-) mice (age 7 – 31 weeks). At the same locations, EG thickness was determined ex vivo using two-photon laser scanning microscopy. In ApoE-/- bifurcations the overall median level of adhesion was 48 platelets/mm2 (interquartile range: 16 – 80), which was significantly higher than in B6 bifurcations (0 (0 – 16), p = 0.001). This difference appeared to result from a significant age-dependent increase in ApoE-/- mice, while no such change was observed in B6 mice. At the same time, the EG in ApoE-/- bifurcations was significantly thinner than in B6 bifurcations (2.2 vs. 2.5 μm, respectively; p < 0.05). This resulted from the fact that in B6 bifurcations EG thickness increased with age (from 2.4 μm in young mice to 3.0 μm in aged ones), while in bifurcations of ApoE-/- mice this growth appeared to be absent (2.2 μm at all ages). During atherogenesis, platelet adhesion to the wall of the carotid artery bifurcation increases significantly. At the same location, EG growth with age is hampered. Therefore, glycocalyx-reinforcing strategies could possibly ameliorate atherosclerosis.


2017 ◽  
pp. 531-537 ◽  
Author(s):  
F. NADRIGNY ◽  
K. LE MEUR ◽  
E. D. SCHOMBURG ◽  
S. SAFAVI-ABBASI ◽  
P. DIBAJ

We developed appropriate surgical procedures for single and repetitive multi-photon imaging of spinal cord in vivo. By intravenous anesthesia, artificial ventilation and laminectomy, acute experiments were performed in the dorsal and lateral white matter. By volatile anesthesia and minimal-invasive surgery, chronic repetitive imaging up to 8 months was performed in the dorsal column through the window between two adjacent spines. Transgenic mouse technology enabled simultaneous imaging of labeled axons, astrocytes and microglia. Repetitive imaging showed positional shifts of microglia over time. These techniques serve for investigations of cellular dynamics and cell-cell interactions in intact and pathologically changed spinal tissue.


Synaptic plasticity is a biological system of specific pattern of synaptic activity result in changes in synaptic strength. This influence puberty, pregnancy hormones, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. Increasing evidence connects the terminal synaptic changes with potential propagation in adolescent and pregnancy. We investigate on the synaptic structural plasticity, which has mainly been studied with in vivo two photon laser scanning microscopy. We also discuss how a different type of synapses, the multicontact synapses associated with pregnancy.


Sign in / Sign up

Export Citation Format

Share Document