scholarly journals Acousto-optic modulation of photonic bound state in the continuum

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Zejie Yu ◽  
Xiankai Sun

AbstractPhotonic bound states in the continuum (BICs) have recently been studied in various systems and have found wide applications in sensors, lasers, and filters. Applying BICs in photonic integrated circuits enables low-loss light guidance and routing in low-refractive-index waveguides on high-refractive-index substrates, which opens a new avenue for integrated photonics with functional single-crystal materials. Here, we demonstrate high-quality integrated lithium niobate microcavities inside which the photonic BIC modes circulate and further modulate these BIC modes acousto-optically by using piezoelectrically actuated surface acoustic waves at microwave frequencies. With a high acousto-optic modulation frequency, the acousto-optic coupling is well situated in the resolved-sideband regime. This leads to coherent coupling between microwave and optical photons, which is exhibited by the observed electro-acousto-optically induced transparency and absorption. Therefore, our devices serve as a paradigm for manipulating and controlling photonic BICs on a chip, which will enable many other applications of photonic BICs in the areas of microwave photonics and quantum information processing.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Emilia Pruszyńska-Karbownik ◽  
Mikołaj Janczak ◽  
Tomasz Czyszanowski

Abstract Bound states in the continuum (BICs) are observed in optical cavities composed of a high refractive index periodic structure embedded in significantly lower refractive index surroundings, enabling vertical confinement of the grating modes. Here, we propose a vertically nonsymmetric configuration, implemented on a high refractive index bulk substrate with a one-dimensional grating positioned on a distributed Bragg reflector (DBR). In this configuration, the grating modes are leaky, which could prohibit the creation of a BIC if the grating was implemented on uniform substrate. However, the judiciously designed DBR on which the grating is implemented reflects nonzero diffraction orders induced by the grating. We found that the laterally antisymmetric optical modes located at the center of the Brillouin zone of this structure create BICs that are robust against changes in the grating parameters, as long as the DBR reflects the diffraction orders. The configuration enables a high degree of design freedom, facilitating the realization of very high quality factor cavities in conventional all-semiconductor technology.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Søren Raza ◽  
Anders Kristensen

AbstractThe advent of resonant dielectric nanomaterials has provided a new path for concentrating and manipulating light on the nanoscale. Such high-refractive-index materials support a diverse set of low-loss optical resonances, including Mie resonances, anapole states, and bound states in the continuum. Through these resonances, high-refractive-index materials can be used to engineer the optical near field, both inside and outside the nanostructures, which opens up new opportunities for Raman spectroscopy. In this review, we discuss the impact of high-refractive-index nano-optics on Raman spectroscopy. In particular, we consider the intrinsic Raman enhancement produced by different dielectric resonances and their theoretical description. Using the optical reciprocity theorem, we derive an expression which links the Raman enhancement to the enhancement of the stored electric energy. We also address recent results on surface-enhanced Raman spectroscopy based on high-refractive-index dielectric materials along with applications in stimulated Raman scattering and nanothermometry. Finally, we discuss the potential of Raman spectroscopy as a tool for detecting the optical near-fields produced by dielectric resonances, complementing reflection and transmission measurements.


Open Physics ◽  
2013 ◽  
Vol 11 (4) ◽  
Author(s):  
Omar Mustafa

AbstractWe extend Panella and Roy’s [17] work for massless Dirac particles with position-dependent (PD) velocity. We consider Dirac particles where the mass and velocity are both position-dependent. Bound states in the continuum (BIC)-like and discrete bound state solutions are reported. It is observed that BIC-like solutions are not only feasible for the ultra-relativistic (massless) Dirac particles but also for Dirac particles with PDmass and PD-velocity that satisfy the condition m(x) v F2 (x) = A, where A ≥ 0 is constant. Dirac Pöschl-Teller and harmonic oscillator models are also reported.


Optica ◽  
2019 ◽  
Vol 6 (10) ◽  
pp. 1342 ◽  
Author(s):  
Zejie Yu ◽  
Xiang Xi ◽  
Jingwen Ma ◽  
Hon Ki Tsang ◽  
Chang-Ling Zou ◽  
...  

ACS Nano ◽  
2020 ◽  
Vol 14 (11) ◽  
pp. 15417-15427 ◽  
Author(s):  
Silvia Romano ◽  
Maria Mangini ◽  
Erika Penzo ◽  
Stefano Cabrini ◽  
Anna Chiara De Luca ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shereena Joseph ◽  
Saurabh Pandey ◽  
Swagato Sarkar ◽  
Joby Joseph

Abstract From theoretical model to experimental realization, the bound state in the continuum (BIC) is an emerging area of research interest in the last decade. In the initial years, well-established theoretical frameworks explained the underlying physics for optical BIC modes excited in various symmetrical configurations. Eventually, in the last couple of years, optical-BICs were exploited as a promising tool for experimental realization with advanced nanofabrication techniques for numerous breakthrough applications. Here, we present a review of the evolution of BIC modes in various symmetry and functioning mediums along with their application. More specifically, depending upon the nature of the interacting medium, the excitations of BIC modes are classified into the pure dielectric and lossy plasmonic BICs. The dielectric constituents are again classified as photonic crystal functioning in the subwavelength regime, influenced by the diffraction modes and metasurfaces for interactions far from the diffraction regime. More importantly, engineered functional materials evolved with the pure dielectric medium are explored for hybrid-quasi-BIC modes with huge-quality factors, exhibiting a promising approach to trigger the nanoscale phenomena more efficiently. Similarly, hybrid modes instigated by the photonic and plasmonic constituents can replace the high dissipative losses of metallic components, sustaining the high localization of field and high figure of merit. Further, the discussions are based on the applications of the localized BIC modes and high-quality quasi-BIC resonance traits in the nonlinear harmonic generation, refractometric sensing, imaging, lasing, nanocavities, low loss on-chip communication, and as a photodetector. The topology-controlled beam steering and, chiral sensing has also been briefly discussed.


2020 ◽  
Vol 28 (26) ◽  
pp. 38907
Author(s):  
Dmitrii N. Maksimov ◽  
Valeriy S. Gerasimov ◽  
Silvia Romano ◽  
Sergey P. Polyutov

Sign in / Sign up

Export Citation Format

Share Document