scholarly journals Clathrin adapters AP-1 and GGA2 support expression of epidermal growth factor receptor for cell growth

Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Takefumi Uemura ◽  
Takehiro Suzuki ◽  
Naoshi Dohmae ◽  
Satoshi Waguri

AbstractThe role of Golgi/endosome-localized clathrin adapters in the maintenance of steady-state cell surface epidermal growth factor receptor (EGFR) is not well known. Here, we show that EGFR associates preferentially with both AP-1 and GGA2 in vitro. AP-1 depletion caused a reduction in the EGFR protein by promoting its lysosomal degradation. Triple immunofluorescence microscopy and proximity ligation assays demonstrated that the interaction of EGFR with AP-1 or GGA2 occurred more frequently in Rab11-positive recycling endosomes than in Rab5-positive early endosomes. Biochemical recycling assay revealed that the depletion of AP-1 or GGA2 significantly suppressed EGFR recycling to the plasma membrane regardless of the EGF stimulation. Depletion of AP-1 or GGA2 also reduced cell contents of other tyrosine kinases, MET and ErbB4, and therefore, suppressed the growth of H1975 cancer cells in culture and xenograft model. Moreover, AP-1 was expressed in endosomes at higher levels in some cancer tissues. Collectively, these results suggest that AP-1 and GGA2 function in recycling endosomes to retrieve endocytosed EGFR, thereby sustaining its cell surface expression and, consequently, cancer cell growth.

2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Eric C. Tom ◽  
Insha Mushtaq ◽  
Bhopal C. Mohapatra ◽  
Haitao Luan ◽  
Aaqib M. Bhat ◽  
...  

ABSTRACT Epidermal growth factor receptor (EGFR) is a prototype receptor tyrosine kinase and an oncoprotein in many solid tumors. Cell surface display of EGFR is essential for cellular responses to its ligands. While postactivation endocytic trafficking of EGFR has been well elucidated, little is known about mechanisms of basal/preactivation surface display of EGFR. Here, we identify a novel role of the endocytic regulator EHD1 and a potential EHD1 partner, RUSC2, in cell surface display of EGFR. EHD1 and RUSC2 colocalize with EGFR in vesicular/tubular structures and at the Golgi compartment. Inducible EHD1 knockdown reduced the cell surface EGFR expression with accumulation at the Golgi compartment, a phenotype rescued by exogenous EHD1. RUSC2 knockdown phenocopied the EHD1 depletion effects. EHD1 or RUSC2 depletion impaired the EGF-induced cell proliferation, demonstrating that the novel, EHD1- and RUSC2-dependent transport of unstimulated EGFR from the Golgi compartment to the cell surface that we describe is functionally important, with implications for physiologic and oncogenic roles of EGFR and targeted cancer therapies.


2004 ◽  
Vol 15 (5) ◽  
pp. 2143-2155 ◽  
Author(s):  
Anuradha Gullapalli ◽  
Tiana A. Garrett ◽  
May M. Paing ◽  
Courtney T. Griffin ◽  
Yonghua Yang ◽  
...  

Sorting nexin 1 (SNX1) and SNX2, homologues of the yeast vacuolar protein-sorting (Vps)5p, contain a phospholipid-binding motif termed the phox homology (PX) domain and a carboxyl terminal coiled-coil region. A role for SNX1 in trafficking of cell surface receptors from endosomes to lysosomes has been proposed; however, the function of SNX2 remains unknown. Toward understanding the function of SNX2, we first examined the distribution of endogenous protein in HeLa cells. We show that SNX2 resides primarily in early endosomes, whereas SNX1 is found partially in early endosomes and in tubulovesicular-like structures distributed throughout the cytoplasm. We also demonstrate that SNX1 interacts with the mammalian retromer complex through its amino terminal domain, whereas SNX2 does not. Moreover, activated endogenous epidermal growth factor receptor (EGFR) colocalizes markedly with SNX2-positive endosomes, but minimally with SNX1-containing vesicles. To assess SNX2 function, we examined the effect of a PX domain-mutated SNX2 that is defective in vesicle localization on EGFR trafficking. Mutant SNX2 markedly inhibited agonist-induced EGFR degradation, whereas internalization remained intact. In contrast, SNX1 PX domain mutants failed to effect EGFR degradation, whereas a SNX1 deletion mutant significantly inhibited receptor down-regulation. Interestingly, knockdown of SNX1 and SNX2 expression by RNA interference failed to alter agonist-induced EGFR down-regulation. Together, these findings suggest that both SNX1 and SNX2 are involved in regulating lysosomal sorting of internalized EGFR, but neither protein is essential for this process. These studies are the first to demonstrate a function for SNX2 in protein trafficking.


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192927
Author(s):  
Alexey V. Danilov ◽  
Divas Neupane ◽  
Archana Sidalaghatta Nagaraja ◽  
Elena V. Feofanova ◽  
Leigh Ann Humphries ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26815 ◽  
Author(s):  
Alexey V. Danilov ◽  
Divas Neupane ◽  
Archana Sidalaghatta Nagaraja ◽  
Elena V. Feofanova ◽  
Leigh Ann Humphries ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document