scholarly journals SHR/NCrl rats as a model of ADHD can be discriminated from controls based on their brain, blood, or urine metabolomes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Dupuy ◽  
Pierre Castelnau ◽  
Sylvie Mavel ◽  
Antoine Lefevre ◽  
Lydie Nadal-Desbarats ◽  
...  

AbstractAttention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. The neurobiological mechanisms underlying ADHD are still poorly understood, and its diagnosis remains difficult due to its heterogeneity. Metabolomics is a recent strategy for the holistic exploration of metabolism and is well suited for investigating the pathophysiology of diseases and finding molecular biomarkers. A few clinical metabolomic studies have been performed on peripheral samples from ADHD patients but are limited by their access to the brain. Here, we investigated the brain, blood, and urine metabolomes of SHR/NCrl vs WKY/NHsd rats to better understand the neurobiology and to find potential peripheral biomarkers underlying the ADHD-like phenotype of this animal model. We showed that SHR/NCrl rats can be differentiated from controls based on their brain, blood, and urine metabolomes. In the brain, SHR/NCrl rats displayed modifications in metabolic pathways related to energy metabolism and oxidative stress further supporting their importance in the pathophysiology of ADHD bringing news arguments in favor of the Neuroenergetic theory of ADHD. Besides, the peripheral metabolome of SHR/NCrl rats also shared more than half of these differences further supporting the importance of looking at multiple matrices to characterize a pathophysiological condition of an individual. This also stresses out the importance of investigating the peripheral energy and oxidative stress metabolic pathways in the search of biomarkers of ADHD.

Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1039 ◽  
Author(s):  
Juan Carlos Corona

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder of childhood. Although abnormalities in several brain regions and disturbances of the catecholaminergic pathway have been demonstrated, the pathophysiology of ADHD is not completely understood, but as a multifactorial disorder, has been associated with an increase in oxidative stress and neuroinflammation. This review presents an overview of factors that increase oxidative stress and neuroinflammation. The imbalance between oxidants and antioxidants and also the treatment with medications are two factors that can increase oxidative damage, whereas the comorbidity between ADHD and inflammatory disorders, altered immune response, genetic and environmental associations, and polymorphisms in inflammatory-related genes can increase neuroinflammation. Evidence of an association with these factors has become valuable for research on ADHD. Such evidence opens up new intervention routes for the use of natural products as antioxidants that could have potential as a treatment against oxidative stress and neuroinflammation in ADHD.


2015 ◽  
Vol 229 (1-2) ◽  
pp. 310-317 ◽  
Author(s):  
Esra Guney ◽  
Fatih Hilmi Cetin ◽  
Murat Alisik ◽  
Huseyin Tunca ◽  
Yasemin Tas Torun ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 176 ◽  
Author(s):  
Lourdes Alvarez-Arellano ◽  
Nadia González-García ◽  
Marcela Salazar-García ◽  
Juan Carlos Corona

Psychostimulants and non-psychostimulants are the medications prescribed for the treatment of attention-deficit/hyperactivity disorder (ADHD). However, several adverse results have been linked with an increased risk of substance use and side effects. The pathophysiology of ADHD is not completely known, although it has been associated with an increase in inflammation and oxidative stress. This review presents an overview of findings following antioxidant treatment for ADHD and describes the potential amelioration of inflammation and oxidative stress using antioxidants that might have a future as multi-target adjuvant therapy in ADHD. The use of antioxidants against inflammation and oxidative conditions is an emerging field in the management of several neurodegenerative and neuropsychiatric disorders. Thus, antioxidants could be promising as an adjuvant ADHD therapy.


Sign in / Sign up

Export Citation Format

Share Document