Role of TRPM2 in brain tumours and potential as a drug target

Author(s):  
Delphine Ji ◽  
Zheng-wei Luo ◽  
Andrea Ovcjak ◽  
Rahmah Alanazi ◽  
Mei-Hua Bao ◽  
...  
Keyword(s):  
2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Thomas Thiebault ◽  
Laëtitia Fougère ◽  
Anaëlle Simonneau ◽  
Emilie Destandau ◽  
Claude Le Milbeau ◽  
...  

AbstractThis study investigated the potential of sediments accumulated in sewer systems to record human activities through the occurrence of drug target residues (DTR). The installation studied is 17 m deep underground decantation tank that traps the coarse fractions of a unitary sewer system (northern part of Orléans, France), collecting both stormwater and wastewater. The sediments deposited in this tank could constitute a nonesuch opportunity to study the historical evolution of illicit and licit drug consumption in the catchment, however, the deposition processes and the record of DTRs remain largely unknown at present. Five cores were acquired from 2015 to 2017. One hundred fifty-two sediment samples were extracted using a mixture of ultra-pure water:methanol (1:1) prior to analysis of the extracts by high-pressure liquid chromatography coupled to tandem mass spectrometry. Several classical sedimentological analyses such as total organic carbon, facies description and granulometry were also performed on these samples, in order to understand the most important factors (e.g., physico-chemical properties of the DTRs, solid type, assumed load in wastewater) impacting their deposition.The key role of the speciation of DTRs was highlighted by the higher contents in neutral and anionic DTRs in organic layers, whereas only cationic DTRs were found in mineral layers. The considerable modifications in the sediments’ properties, generated by distinct origins (i.e., stormwater or wastewater), are therefore the most important drivers that must be taken into account when back-calculating the historical patterns of drug consumption from their DTR concentrations in decantation tank sediments. Further research remains necessary to fully understand the deposition process, but this study provides new clues explaining these temporal evolutions.


Open Biology ◽  
2014 ◽  
Vol 4 (2) ◽  
pp. 130217 ◽  
Author(s):  
Puneet Sharma ◽  
Alo Nag

The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed.


1990 ◽  
Vol 3 (2_suppl) ◽  
pp. 95-99
Author(s):  
D. Melançon ◽  
D. Tampieri ◽  
A. Olivier
Keyword(s):  

2019 ◽  
Vol 14 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Tooran Nayeri Chegeni ◽  
Mahdi Fakhar

Background: Wolbachia is the most common endosymbiotic bacteria in insectborne parasites and it is the most common reproductive parasite in the world. Wolbachia has been found worldwide in numerous arthropod and parasite species, including insects, terrestrial isopods, spiders, mites and filarial nematodes. There is a complicated relationship between Wolbachia and its hosts and in some cases, they create a mutual relationship instead of a parasitic relationship. Some species are not able to reproduce in the absence of infection with Wolbachia. Thus, the use of existing strains of Wolbachia bacteria offers a potential strategy for the control of the population of mosquitoes and other pests and diseases. Methods: We searched ten databases and reviewed published papers regarding the role of Wolbachia as a promising drug target and emerging biological control agents of parasitic diseases between 1996 and 2017 (22 years) were considered eligible. Also, in the current study several patents (WO008652), (US7723062), and (US 0345249 A1) were reviewed. Results: Endosymbiotic Wolbachia bacteria, which are inherited from mothers, is transmitted to mosquitoes and interferes with pathogen transmission. They can change the reproduction of their host. Wolbachia is transmitted through the cytoplasm of eggs and have evolved different mechanisms for manipulating the reproduction of its hosts, including the induction of reproductive incompatibility, parthenogenesis, and feminization. The extensive effects of Wolbachia on reproduction and host fitness have made Wolbachia the issue of growing attention as a potential biocontrol agent. Conclusion: Wolbachia has opened a new window to design a costly, potent and ecofriendly drug target for effective treatment and elimination of vector-borne parasitic diseases.


2015 ◽  
Vol 139 ◽  
pp. 328-333 ◽  
Author(s):  
Marta Cicuendez ◽  
Carles Lorenzo-Bosquet ◽  
Gemma Cuberas-Borrós ◽  
Francisco Martinez-Ricarte ◽  
Esteban Cordero ◽  
...  

2013 ◽  
Vol 28 (3) ◽  
pp. 347-350
Author(s):  
Matthew Bailey ◽  
Anjum Qureshi ◽  
Ian Kamaly-Asl

Sign in / Sign up

Export Citation Format

Share Document