Promising Role of Wolbachia as Anti-parasitic Drug Target and Eco-Friendly Biocontrol Agent

2019 ◽  
Vol 14 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Tooran Nayeri Chegeni ◽  
Mahdi Fakhar

Background: Wolbachia is the most common endosymbiotic bacteria in insectborne parasites and it is the most common reproductive parasite in the world. Wolbachia has been found worldwide in numerous arthropod and parasite species, including insects, terrestrial isopods, spiders, mites and filarial nematodes. There is a complicated relationship between Wolbachia and its hosts and in some cases, they create a mutual relationship instead of a parasitic relationship. Some species are not able to reproduce in the absence of infection with Wolbachia. Thus, the use of existing strains of Wolbachia bacteria offers a potential strategy for the control of the population of mosquitoes and other pests and diseases. Methods: We searched ten databases and reviewed published papers regarding the role of Wolbachia as a promising drug target and emerging biological control agents of parasitic diseases between 1996 and 2017 (22 years) were considered eligible. Also, in the current study several patents (WO008652), (US7723062), and (US 0345249 A1) were reviewed. Results: Endosymbiotic Wolbachia bacteria, which are inherited from mothers, is transmitted to mosquitoes and interferes with pathogen transmission. They can change the reproduction of their host. Wolbachia is transmitted through the cytoplasm of eggs and have evolved different mechanisms for manipulating the reproduction of its hosts, including the induction of reproductive incompatibility, parthenogenesis, and feminization. The extensive effects of Wolbachia on reproduction and host fitness have made Wolbachia the issue of growing attention as a potential biocontrol agent. Conclusion: Wolbachia has opened a new window to design a costly, potent and ecofriendly drug target for effective treatment and elimination of vector-borne parasitic diseases.

2021 ◽  
Author(s):  
Jörg Hirzmann ◽  
David Ebmer ◽  
Guillermo J. Sánchez Contreras ◽  
Ana Rubio-García ◽  
Gerd Magdowski ◽  
...  

Abstract Background: Belonging to the anopluran family Echinophthiriidae, Echinophthirius horridus, the seal louse, has been reported to parasitize a broad range of representatives of phocid seals. So far, only few studies focused on vector function of echinophthiriid lice and knowledge on their role in pathogen transmission is still scarce. The current study aims to investigate the possible vector role of E. horridus parasitizing seals in the Dutch Wadden Sea.Methods: E. horridus seal lice were collected from 54 harbour seals (Phoca vitulina) and one grey seal (Halichoerus grypus) during their rehabilitation period at the Sealcentre Pieterburen, the Netherlands. DNA was extracted from pooled seal lice of individual seals for molecular detection of the seal heartworm Acanthocheilonema spirocauda, the rickettsial intracellular bacterium Anaplasma phagocytophilum, and the cell wall-less bacteria Mycoplasma spp. using PCR assays.Results: Seal lice from 35% of the harbour seals (19/54) and from the grey seal proved positive for A. spirocauda. The seal heartworm was molecularly characterised and phylogenetically analysed (rDNA, cox1). A nested PCR was developed for the cox1 gene to detect A. spirocauda stages in seal lice. A. phagocytophilum and a Mycoplasma species previously identified from a patient with disseminated ‘seal finger’ mycoplasmosis were detected the first time in seal lice. Conclusions: Our findings support the potential vector role of seal lice in transmission of A. spirocauda, and reveal new insights into the spectrum of pathogens occurring in seal lice. Studies on vector competence of E. horridus, especially for bacterial pathogens, are essentially needed in the future as these pathogens might have detrimental effects on the health of seal populations. Further, studies on the vector role of different echinophthiriid species infecting a wide range of pinniped hosts should be conducted to extend the knowledge of vector borne pathogens in seal lice.


2020 ◽  
Author(s):  
Jörg Hirzmann ◽  
David Ebmer ◽  
Guillermo J. Sánchez Contreras ◽  
Ana Rubio-García ◽  
Gerd Magdowski ◽  
...  

Abstract Background: Belonging to the anopluran family Echinophthiriidae, Echinophthirius horridus, the seal louse, has been reported to parasitize a broad range of representatives of phocid seals. So far, only few studies focused on vector function of echinophthiriid lice and knowledge on their role in pathogen transmission is still scarce. The current study aims to investigate the possible vector role of E. horridus parasitizing seals in the Dutch Wadden Sea.Methods: More than 1200 E. horridus seal lice were collected from 54 harbour seals (Phoca vitulina) and one grey seal (Halichoerus grypus) during their rehabilitation period in the Sealcentre Pieterburen, the Netherlands. DNA was extracted from pooled seal lice of individual seals for molecular detection of the seal heartworm Acanthocheilonema spirocauda, the rickettsial intracellular bacterium Anaplasma phagocytophilum, and Mycoplasma spp. using PCR assays.Results: Seal lice from 35% of the harbour seals (19/54) and from the grey seal proved positive for A. spirocauda. The seal heartworm was molecularly characterised and phylogenetically analysed for the first time (rDNA, cox1). A nested PCR was developed for the cox1 gene to detect A. spirocauda stages in seal lice. A. phagocytophilum and a Mycoplasma species previously identified from a patient with disseminated ‘seal finger’ mycoplasmosis were detected the first time in seal lice. Conclusions: Our findings support the potential vector role of seal lice in transmission of A. spirocauda, and reveal new insights into the spectrum of pathogens occurring in seal lice. As these pathogens might have detrimental effects on the health of seal populations further epidemiological investigations on infections due to these pathogens in seals should be conducted.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jörg Hirzmann ◽  
David Ebmer ◽  
Guillermo J. Sánchez-Contreras ◽  
Ana Rubio-García ◽  
Gerd Magdowski ◽  
...  

Abstract Background Belonging to the anopluran family Echinophthiriidae, Echinophthirius horridus, the seal louse, has been reported to parasitise a broad range of representatives of phocid seals. So far, only a few studies have focused on the vector function of echinophthiriid lice, and knowledge about their role in pathogen transmission is still scarce. The current study aims to investigate the possible vector role of E. horridus parasitising seals in the Dutch Wadden Sea. Methods E. horridus seal lice were collected from 54 harbour seals (Phoca vitulina) and one grey seal (Halichoerus grypus) during their rehabilitation period at the Sealcentre Pieterburen, The Netherlands. DNA was extracted from pooled seal lice of individual seals for molecular detection of the seal heartworm Acanthocheilonema spirocauda, the rickettsial intracellular bacterium Anaplasma phagocytophilum, and the cell wall-less bacteria Mycoplasma spp. using PCR assays. Results Seal lice from 35% of the harbour seals (19/54) and from the grey seal proved positive for A. spirocauda. The seal heartworm was molecularly characterised and phylogenetically analysed (rDNA, cox1). A nested PCR was developed for the cox1 gene to detect A. spirocauda stages in seal lice. A. phagocytophilum and a Mycoplasma species previously identified from a patient with disseminated ‘seal finger’ mycoplasmosis were detected for the first time, to our knowledge, in seal lice. Conclusions Our findings support the potential vector role of seal lice in the transmission of A. spirocauda and reveal new insights into the spectrum of pathogens occurring in seal lice. Studies on vector competence of E. horridus, especially for bacterial pathogens, are essentially needed in the future as these pathogens might have detrimental effects on the health of seal populations. Furthermore, studies on the vector role of different echinophthiriid species infecting a wide range of pinniped hosts should be conducted to extend the knowledge of vector-borne pathogens.


2021 ◽  
Vol 95 ◽  
Author(s):  
P.V. Alves ◽  
S.C. Gomides ◽  
F.B. Pereira

Abstract While much attention has been paid to vector-borne filariasis, diseases that threaten millions of people in tropical and subtropical countries, the literature on host–parasite associations and transmission strategies of filarial nematodes in wildlife is scarce. Here, we report the co-occurrence of chigger mites (Eutrombicula alfreddugesi) and onchocercid nematodes (Oswaldofilaria chabaudi) parasitizing the lizard Tropidurus torquatus in the State of Minas Gerais, Brazil. Examination of chiggers established, for the first time, the occurrence of microfilariae in trombiculid mites (Trombiculidae). These larvae were morphologically similar to those recovered from adult females of O. chabaudi. The current evidence suggests that chiggers do not play a role in the transmission of filarioid nematodes, but rather act as accidental or dead-end hosts. Nevertheless, considering the polyphagous nature of trombiculid mites, similar to blood-sucking insects involved in the transmission of several infectious diseases, further studies may shed light on the potential role of chiggers as vectors of filarioids.


2020 ◽  
Author(s):  
Jörg Hirzmann ◽  
David Ebmer ◽  
Guillermo J. Sánchez Contreras ◽  
Ana Rubio-García ◽  
Gerd Magdowski ◽  
...  

Abstract Background: Belonging to the anopluran family Echinophthiriidae, Echinophthirius horridus, the seal louse, has been reported to parasitize a broad range of representatives of phocid seals. So far, only few studies focused on vector function of echinophthiriid lice and knowledge on their role in pathogen transmission is still scarce. The current study aims to investigate the role of E. horridus in vector-borne diseases of seals in the Dutch Wadden Sea and to attribute to its morphological features of environmental adaptation.Methods: More than 1200 E. horridus seal lice were collected from 54 harbour seals (Phoca vitulina) and one grey seal (Halichoerus grypus) during their rehabilitation period in the Sealcentre Pieterburen, the Netherlands. DNA was extracted from pooled seal lice of individual seals for molecular detection of the seal heartworm Acanthocheilonema spirocauda, the rickettsial intracellular bacterium Anaplasma phagocytophilum, and Mycoplasma spp. using PCR assays. In addition E. horridus-adult and -eggs were analysed by scanning electron microscopy (SEM).Results: Seal lice from 35% of the harbour seals (19/54) and from the grey seal proved positive for A. spirocauda. The seal heartworm was molecularly characterised and phylogenetically analysed for the first time (rDNA, cox1). A nested PCR was developed for the cox1 gene to detect A. spirocauda stages in seal lice. A. phagocytophilum and a Mycoplasma species previously identified from a patient with disseminated ‘seal finger’ mycoplasmosis were detected the first time in seal lice. SEM analyses of E. horridus-adults and -eggs brought out more clearly unique morphological features, such as ‘lock-like’ claws, setae-covered cuticle as well as vaulted nit lids carrying micropyles for respiration, which all demonstrate the adaption of this ectoparasite to its semiaquatic host and the marine environment.Conclusions: Our findings support the vector role of seal lice in transmission of A. spirocauda, Mycoplasma spp. and A. phagocytophilum and presented more detailed images of their morphological adaptations to the semiaquatic lifestyle of their hosts. As the vector-borne pathogens might have detrimental effects on the health of seal populations further epidemiological investigations on infections due to these pathogens in seals should be conducted.


2019 ◽  
Vol 25 (39) ◽  
pp. 5266-5278 ◽  
Author(s):  
Katia D'Ambrosio ◽  
Claudiu T. Supuran ◽  
Giuseppina De Simone

Protozoans belonging to Plasmodium, Leishmania and Trypanosoma genera provoke widespread parasitic diseases with few treatment options and many of the clinically used drugs experiencing an extensive drug resistance phenomenon. In the last several years, the metalloenzyme Carbonic Anhydrase (CA, EC 4.2.1.1) was cloned and characterized in the genome of these protozoa, with the aim to search for a new drug target for fighting malaria, leishmaniasis and Chagas disease. P. falciparum encodes for a CA (PfCA) belonging to a novel genetic family, the η-CA class, L. donovani chagasi for a β-CA (LdcCA), whereas T. cruzi genome contains an α-CA (TcCA). These three enzymes were characterized in detail and a number of in vitro potent and selective inhibitors belonging to the sulfonamide, thiol, dithiocarbamate and hydroxamate classes were discovered. Some of these inhibitors were also effective in cell cultures and animal models of protozoan infections, making them of considerable interest for the development of new antiprotozoan drugs with a novel mechanism of action.


2020 ◽  
Vol 26 ◽  
Author(s):  
Yini Ma ◽  
Xiu Cao ◽  
Guojuan Shi ◽  
Tianlu Shi

: MicroRNAs (miRNAs) play a vital role in the onset and development of many diseases, including cancers. Emerging evidence shows that numerous miRNAs have the potential to be used as diagnostic biomarkers for cancers, and miRNA-based therapy may be a promising therapy for the treatment of malignant neoplasm. MicroRNA-145 (miR-145) has been considered to play certain roles in various cellular processes, such as proliferation, differentiation and apoptosis, via modulating expression of direct target genes. Recent reports show that miR-145 participates in the progression of digestive system cancers, and plays crucial and novel roles for cancer treatment. In this review, we summarize the recent knowledge concerning the function of miR-145 and its direct targets in digestive system cancers. We discuss the potential role of miR-145 as valuable biomarkers for digestive system cancers and how miR-145 regulates these digestive system cancers via different targets to explore the potential strategy of targeting miR-145.


Epidemiologia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 84-94
Author(s):  
Mst. Marium Begum ◽  
Osman Ulvi ◽  
Ajlina Karamehic-Muratovic ◽  
Mallory R. Walsh ◽  
Hasan Tarek ◽  
...  

Background: Chikungunya is a vector-borne disease, mostly present in tropical and subtropical regions. The virus is spread by Ae. aegypti and Ae. albopictus mosquitos and symptoms include high fever to severe joint pain. Dhaka, Bangladesh, suffered an outbreak of chikungunya in 2017 lasting from April to September. With the goal of reducing cases, social media was at the forefront during this outbreak and educated the public about symptoms, prevention, and control of the virus. Popular web-based sources such as the top dailies in Bangladesh, local news outlets, and Facebook spread awareness of the outbreak. Objective: This study sought to investigate the role of social and mainstream media during the chikungunya epidemic. The study objective was to determine if social media can improve awareness of and practice associated with reducing cases of chikungunya. Methods: We collected chikungunya-related information circulated from the top nine television channels in Dhaka, Bangladesh, airing from 1st April–20th August 2017. All the news published in the top six dailies in Bangladesh were also compiled. The 50 most viewed chikungunya-related Bengali videos were manually coded and analyzed. Other social media outlets, such as Facebook, were also analyzed to determine the number of chikungunya-related posts and responses to these posts. Results: Our study showed that media outlets were associated with reducing cases of chikungunya, indicating that media has the potential to impact future outbreaks of these alpha viruses. Each media outlet (e.g., web, television) had an impact on the human response to an individual’s healthcare during this outbreak. Conclusions: To prevent future outbreaks of chikungunya, media outlets and social media can be used to educate the public regarding prevention strategies such as encouraging safe travel, removing stagnant water sources, and assisting with tracking cases globally to determine where future outbreaks may occur.


Author(s):  
Delphine Ji ◽  
Zheng-wei Luo ◽  
Andrea Ovcjak ◽  
Rahmah Alanazi ◽  
Mei-Hua Bao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document