scholarly journals MicroRNA-421 confers paclitaxel resistance by binding to the KEAP1 3′UTR and predicts poor survival in non-small cell lung cancer

2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Fu-Gang Duan ◽  
Mei-Fang Wang ◽  
Ya-Bing Cao ◽  
Dan Li ◽  
Run-Ze Li ◽  
...  

Abstract MicroRNAs regulate post-transcriptional gene expression and play important roles in multiple cellular processes. In this study, we found that miR-421 suppresses kelch-like ECH-associated protein 1(KEAP1) expression by targeting its 3′-untranslated region (3′UTR). A Q-PCR assay demonstrated that miR-421 is overexpressed in non-small cell lung cancer (NSCLC), especially in A549 cells. Consistently, the level of miR-421 was higher in clinical blood samples from lung cancer patients than in those from normal healthy donors, suggesting that miR-421 is an important lung cancer biomarker. Interestingly, overexpression of miR-421 reduced the level of KEAP1 expression, which further promoted lung cancer cell migration and invasion, as well as inhibited cell apoptosis both in vivo and in vitro. Furthermore, knockdown of miR-421 expression with an antisense morpholino oligonucleotide (AMO) increased ROS levels and treatment sensitivity to paclitaxel in vitro and in vivo, indicating that high miR-421 expression may at least partly account for paclitaxel tolerance in lung cancer patients. To find the upstream regulator of miR-421, one of the candidates, β-catenin, was knocked out via the CRISPR/Cas9 method in A549 cells. Our data showed that inhibiting β-catenin reduced miR-421 levels in A549 cells. In addition, β-catenin upregulation enhanced miR-421 expression, indicating that β-catenin regulates the expression of miR-421 in lung cancer. Taken together, our findings reveal the critical role of miR-421 in paclitaxel drug resistance and its upstream and downstream regulatory mechanisms. Therefore, miR-421 may serve as a potential molecular therapeutic target in lung cancer, and AMOs may be a potential treatment strategy.

1994 ◽  
Vol 80 (5) ◽  
pp. 332-334 ◽  
Author(s):  
Enzo Soresi ◽  
Giovanni Invernizzi ◽  
Roberto Boffi ◽  
Umberto Borghini ◽  
Gianfranco Schiraldi ◽  
...  

Aims and Background The somatostatin analog octreotide has an antiproliferative effect on small cell lung cancer lines in vitro and in experimental xenograft transplantation systems in vivo. Thus it is worth investigating octreotide activity in the clinical setting. Methods We studied the effect of octreotide (200 μg three times a day subcutaneously for seven days) on serum levels of the tumor marker neuroenolase in 13 patients with small cell lung cancer. Results A decrease in neuroenolase levels was observed at day 7 during octreotide treatment, with a mean ± SD of 32.6 ± 42.0 ng/ml compared to basal values of 44.4 ± 57.7 ng/ml and to washout values of 50.3 ± 65.7 ng/ml ( P < 0.03). Conclusions Our results indicate that octreotide is effective in reducing neuroenolase levels in small cell lung cancer patients. These data suggest a possible role for octreotide in the treatment of this kind of tumor.


2021 ◽  
Vol 9 ◽  
Author(s):  
Danruo Fang ◽  
Hansong Jin ◽  
Xiulin Huang ◽  
Yongxin Shi ◽  
Zeyu Liu ◽  
...  

Non-small cell lung cancer (NSCLC) is considered to be a principal cause of cancer death across the world, and nanomedicine has provided promising alternatives for the treatment of NSCLC in recent years. Photothermal therapy (PTT) and chemodynamic therapy (CDT) have represented novel therapeutic modalities for cancer treatment with excellent performance. The purpose of this research was to evaluate the effects of PPy@Fe3O4 nanoparticles (NPs) on inhibiting growth and metastasis of NSCLC by combination of PTT and CDT. In this study, we synthesized PPy@Fe3O4 NPs through a very facile electrostatic absorption method. And we detected reactive oxygen species production, cell apoptosis, migration and protein expression in different groups of A549 cells and established xenograft models to evaluate the effects of PPy@Fe3O4 NPs for inhibiting the growth of NSCLC. The results showed that the PPy@Fe3O4 NPs had negligible cytotoxicity and could efficiently inhibit the cell growth and metastasis of NSCLC in vitro. In addition, the PPy@Fe3O4 NPs decreased tumor volume and growth in vivo and endowed their excellent MRI capability of observing the location and size of tumor. To sum up, our study displayed that the PPy@Fe3O4 NPs had significant synergistic effects of PTT and CDT, and had good biocompatibility and safety in vivo and in vitro. The PPy@Fe3O4 NPs may be an effective drug platform for the treatment of NSCLC.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 627 ◽  
Author(s):  
Yanhua Fan ◽  
Huaiwei Ding ◽  
Donghwa Kim ◽  
Duc-Hiep Bach ◽  
Ji-Young Hong ◽  
...  

Aberrant activation of hepatocyte growth factor (HGF)/c-Met signaling pathway caused by gene amplification or mutation plays an important role in tumorigenesis. Therefore, c-Met is considered as an attractive target for cancer therapy and c-Met inhibitors have been developed with great interests. However, cancers treated with c-Met inhibitors inevitably develop resistance commonly caused by the activation of PI3K/Akt signal transduction pathway. Therefore, the combination of c-Met and PI3Kα inhibitors showed synergistic activities, especially, in c-Met hyperactivated and PIK3CA-mutated cells. In our previous study, we rationally designed and synthesized DFX117(6-(5-(2,4-difluorophenylsulfonamido)-6-methoxypyridin-3-yl)-N-(2-morpholinoethyl) imidazo[1,2-a]pyridine-3-carboxamide) as a novel PI3Kα selective inhibitor. Herein, the antitumor activity and underlying mechanisms of DFX117 against non-small cell lung cancer (NSCLC) cells were evaluated in both in vitro and in vivo animal models. Concurrent targeted c-Met and PI3Kα by DFX117 dose-dependent inhibited the cell growth of H1975 cells (PIK3CA mutation and c-Met amplification) and A549 cells (KRAS mutation). DFX117 subsequently induced G0/G1 cell cycle arrest and apoptosis. These data highlight the significant potential of DFX117 as a feasible and efficacious agent for the treatment of NSCLC patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wen Zhou ◽  
Mingming Xu ◽  
Zhipeng Wang ◽  
Mingjun Yang

AbstractAs an efficient drug carrier, exosome has been widely used in the delivery of genetic drugs, chemotherapeutic drugs, and anti-inflammatory drugs. As a genetic drug carrier, exosomes are beneficial to improve transfection efficiency and weaken side effects at the same time. Here, we use genetic engineering to prepare engineered exosomes (miR-449a Exo) that can actively deliver miR-449a. It was verified that miR-449a Exo had good homology targeting capacity and was specifically taken up by A549 cells. Moreover, miR-449a Exo had high delivery efficiency of miR-449a in vitro and in vivo. We demonstrated that miR-449a Exo effectively inhibited the proliferation of A549 cells and promoted their apoptosis. In addition, miR-449a Exo was found to control the progression of mouse tumors and prolong their survival in vivo. Our research provides new ideas for exosomes to efficiently and actively load gene drugs, and finds promising methods for the treatment of non-small cell lung cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Mengxing Yao ◽  
XiaoJun Qian ◽  
Houying Qin

Objective. To investigate the effect of Laminaria japonica polysaccharides (LJP) on the survival of non-small-cell lung cancer (NSCLC) A549 cells and its mechanism. Methods. In vitro: the cells were randomly divided into control group, LJP (5 mg/ml) group, LJP (10 mg/ml) group, and LJP (20 mg/ml) group. After corresponding treatment, the survival rate and the expression of proteins related to proliferation, apoptosis, epithelial-mesenchymal transition (EMT), and signaling pathway were detected by CCK8 assay and Western blot, respectively. In vivo: a xenograft model was established to detect the tumor volume and mass and the expression of the above pathway proteins. Results. Compared with the control group, LJP decreased the survival rate of A549 cells (P<0.05), inhibited the protein expression of Ki67 and PCNA (P<0.05), downregulated the expression of Bcl-2 while upregulated the expression of Bax, cl-caspase-3, and cl-caspase-9 (P<0.05), upregulated the expression of E-cadherin, downregulated the expression of vascular endothelial growth factor (VEGF) and N-cadherin (P<0.05), and downregulated β-catenin, transcription factor-4 (TCF4), and c-Myc protein expression levels (P<0.05). In vivo: LJP decreased the volume and mass of the xenograft tumors and downregulated β-catenin, TCF4, and c-Myc protein expression levels compared with the control group (P<0.05). Conclusion. LJP can inhibit the survival of non-small-cell lung cancer A549 cells in vitro, and its mechanism is related to the inhibition of activation of β-catenin/TCF4 pathway activation.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Zhengxiao Zhao ◽  
Baojun Liu ◽  
Jing Sun ◽  
Linwei Lu ◽  
Lumei Liu ◽  
...  

Non-small cell lung cancer (NSCLC) is one of the most lethal cancers worldwide. Inhibitor of differentiation 1 (Id1) is the member mostly linked to tumorigenesis in Id family and a potential molecular target in cancer therapy. In the current study, we established an orthotopic lung cancer model by injecting athymic nude mice with A549 cells and evaluated the antitumor effect of baicalein and expression of Id1-related proteins in vivo and in vitro. Micro-CT images showed that tumor volume in baicalein group was significantly reduced. Western blot analysis revealed that baicalein suppressed the expression of Id1 protein, epithelial-to-mesenchymal transition (EMT) related molecules (N-Cadherin, vimentin), and angiogenesis related protein (VEGF-A), accompanied by upregulation of epithelial markers (such as E-cadherin). In addition, phosphorylation of upstream molecular Src was significantly restrained after baicalein treatment. This study firstly demonstrates that baicalein inhibits tumor growth in orthotopic human NSCLC xenografts via targeting Src/Id1 pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Chen ◽  
Sifu Yang ◽  
Hongying Zhou ◽  
Dan Su

Purpose. Previous studies have reported that the levels of PRDX2 were correlated with tumorigenicity, recurrence, and prognosis of patients with different cancers. We investigated the association between PRDX2 levels and the prognosis of lung cancer patients. We also measured PRDX2 expression of non-small cell lung cancer (NSCLC) cells and examined its roles in the proliferation and migration in vitro and in vivo. Methods. We used the Kaplan–Meier plotter to analyze the survival of different levels of PRDX2 in lung cancer patients. The expression of PRDX2 in normal bronchial epithelial cell line and NSCLC cell lines was measured by qRT-PCR and western blot assays. Biological functions of NSCLC cells were detected by CCK8 and Transwell assays. We constructed tumor growth model using subcutaneously injection of nude mice and metastasis model by tail vein injection in vivo. The protein levels of proliferation related markers were measured by immunohistochemistry assay. Immunofluorescence method was used to detected EMT-related proteins. Results. The high levels of PRDX2 were associated with bad prognosis in lung cancer patients, especially in patients with adenocarcinoma. The expression of PRDX2 in NSCLC cell lines was higher than normal bronchial epithelial cells. Knockdown of PRDX2 inhibited the proliferation, migration, and invasion in A549 cells, while overexpression of PRDX2 promoted the malignancy in NCI-H1299 cells in vitro. Silencing PRDX2 restrained tumor growth and repressed lung metastasis by EMT in vivo. Conclusion. Our data indicates that PRDX2 functions as a protumor regulator and is involved in tumorigenesis and tumor progression of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document