scholarly journals Circular DNA elements of chromosomal origin are common in healthy human somatic tissue

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Henrik Devitt Møller ◽  
Marghoob Mohiyuddin ◽  
Iñigo Prada-Luengo ◽  
M. Reza Sailani ◽  
Jens Frey Halling ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marion Pierre ◽  
Mohammed Djemai ◽  
Hugo Poulin ◽  
Mohamed Chahine

AbstractCardiomyocytes derived from patient-specific induced pluripotent stem cells (iPSC-CMs) successfully reproduce the mechanisms of several channelopathies. However, this approach involve cell reprogramming from somatic tissue biopsies or genomic editing in healthy iPSCs for every mutation found and to be investigated. We aim to knockout (KO) NaV1.5, the cardiac sodium channel, in a healthy human iPSC line, characterize the model and then, use it to express variants of NaV1.5. We develop a homozygous NaV1.5 KO iPSC line able to differentiate into cardiomyocytes with CRISPR/Cas9 tool. The NaV1.5 KO iPSC-CMs exhibited an organized contractile apparatus, spontaneous contractile activity, and electrophysiological recordings confirmed the major reduction in total Na+ currents. The action potentials (APs) exhibited a reduction in their amplitude and in their maximal rate of rise. Voltage optical mapping recordings revealed that the conduction velocity Ca2+ transient waves propagation velocities were slow. A wild-type (WT) NaV1.5 channel expressed by transient transfection in the KO iPSC-CMs restored Na+ channel expression and AP properties. The expression of NaV1.5/delQKP, a long QT type 3 (LQT3) variant, in the NaV1.5 KO iPSC-CMs showed that dysfunctional Na+ channels exhibited a persistent Na+ current and caused prolonged AP duration that led to arrhythmic events, characteristics of LQT3.


Author(s):  
Iñigo Prada-Luengo ◽  
Henrik D. Møller ◽  
Rasmus A. Henriksen ◽  
Qian Gao ◽  
Camilla E. Larsen ◽  
...  

Circular DNA of chromosomal origin form from all parts of eukaryotic genomes. In yeast, circular rDNA accumulates as cells divide, contributing to replicative aging. However, little is known about how other chromosome-deri ved circles segregate and contribute to geneticvariation as cells age. We identified circular DNA across the genome of young S. cerevisiae populations and their aged descendants. Young cells had highly diverse circular DNA populations, but lost 94% of the different circular DNA after 20 divisions. Circles present in both young and old cells were characterized by replication origins and included circles from unique regions of the genome, rDNA circles and telomeric Y’ circles. The loss in genetic heterogeneity in aged cells was accompanied by massive accumulation of rDNA circles >95% of all circular DNA. We discovered circles had flexible inherence patterns. Glucose limited conditions selected for cells with glucose-transporter gene circles, [HXT6/7circle], and up to 50% of cells in a population carried them. [HXT6/7circle] cells were eventually substituted by cells carrying stable chromosomal HXT6 HXT6/7 HXT7 amplifications, suggesting circular DNA were intermediates in chromosomal amplifications. In conclusion, DNA circles can offer a flexible adaptive solution but cells lose genetic heterogeneity from circular DNA as they undergo replicative aging.


2019 ◽  
Author(s):  
Michael J. Tisza ◽  
Diana V. Pastrana ◽  
Nicole L. Welch ◽  
Brittany Stewart ◽  
Alberto Peretti ◽  
...  

SummaryAlthough it is suspected that there are millions of distinct viral species, fewer than 9,000 are catalogued in GenBank’s RefSeq database. We selectively enriched for and amplified the genomes of circular DNA viruses in over 70 animal samples, ranging from cultured soil nematodes to human tissue specimens. A bioinformatics pipeline, Cenote-Taker, was developed to automatically annotate over 2,500 circular genomes in a GenBank-compliant format. The new genomes belong to dozens of established and emerging viral families. Some appear to be the result of previously undescribed recombination events between ssDNA viruses and ssRNA viruses. In addition, hundreds of circular DNA elements that do not encode any discernable similarities to previously characterized sequences were identified. To characterize these “dark matter” sequences, we used an artificial neural network to identify candidate viral capsid proteins, several of which formed virus-like particles when expressed in culture. These data further the understanding of viral sequence diversity and allow for high throughput documentation of the virosphere.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Michael J Tisza ◽  
Diana V Pastrana ◽  
Nicole L Welch ◽  
Brittany Stewart ◽  
Alberto Peretti ◽  
...  

Although millions of distinct virus species likely exist, only approximately 9000 are catalogued in GenBank's RefSeq database. We selectively enriched for the genomes of circular DNA viruses in over 70 animal samples, ranging from nematodes to human tissue specimens. A bioinformatics pipeline, Cenote-Taker, was developed to automatically annotate over 2500 complete genomes in a GenBank-compliant format. The new genomes belong to dozens of established and emerging viral families. Some appear to be the result of previously undescribed recombination events between ssDNA and ssRNA viruses. In addition, hundreds of circular DNA elements that do not encode any discernable similarities to previously characterized sequences were identified. To characterize these ‘dark matter’ sequences, we used an artificial neural network to identify candidate viral capsid proteins, several of which formed virus-like particles when expressed in culture. These data further the understanding of viral sequence diversity and allow for high throughput documentation of the virosphere.


Author(s):  
C. N. Gordon

Gordon and Kleinschmidt have described a new preparative technique for visualizing DNA by electron microscopy. This procedure, which is a modification of Hall's “mica substrate technique”, consists of the following steps: (a) K+ ions on the cleavage surface of native mica are exchanged for Al3+ ions by ion exchange. (b) The mica, with Al3+ in the exchange sites on the surface, is placed in a dilute aqueous salt solution of DNA for several minutes; during this period DNA becomes adsorbed on the surface. (c) The mica with adsorbed DNA is removed from the DNA solution, rinsed, dried and visualized for transmission electron microscopy by Hall's platinum pre-shadow replica technique.In previous studies of circular DNA by this technique, most of the molecules seen were either broken to linears or extensively tangled; in general, it was not possible to obtain suitably large samples of open extended molecules for contour length measurements.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


2014 ◽  
Vol 222 (3) ◽  
pp. 171-178 ◽  
Author(s):  
Mareile Hofmann ◽  
Nathalie Wrobel ◽  
Simon Kessner ◽  
Ulrike Bingel

According to experimental and clinical evidence, the experiences of previous treatments are carried over to different therapeutic approaches and impair the outcome of subsequent treatments. In this behavioral pilot study we used a change in administration route to investigate whether the effect of prior treatment experience on a subsequent treatment depends on the similarity of both treatments. We experimentally induced positive or negative experiences with a topical analgesic treatment in two groups of healthy human subjects. Subsequently, we compared responses to a second, unrelated and systemic analgesic treatment between both the positive and negative group. We found that there was no difference in the analgesic response to the second treatment between the two groups. Our data indicate that a change in administration route might reduce the influence of treatment history and therefore be a way to reduce negative carry-over effects after treatment failure. Future studies will have to validate these findings in a fully balanced design including larger, clinical samples.


Sign in / Sign up

Export Citation Format

Share Document