scholarly journals Discovery of several thousand highly diverse circular DNA viruses

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Michael J Tisza ◽  
Diana V Pastrana ◽  
Nicole L Welch ◽  
Brittany Stewart ◽  
Alberto Peretti ◽  
...  

Although millions of distinct virus species likely exist, only approximately 9000 are catalogued in GenBank's RefSeq database. We selectively enriched for the genomes of circular DNA viruses in over 70 animal samples, ranging from nematodes to human tissue specimens. A bioinformatics pipeline, Cenote-Taker, was developed to automatically annotate over 2500 complete genomes in a GenBank-compliant format. The new genomes belong to dozens of established and emerging viral families. Some appear to be the result of previously undescribed recombination events between ssDNA and ssRNA viruses. In addition, hundreds of circular DNA elements that do not encode any discernable similarities to previously characterized sequences were identified. To characterize these ‘dark matter’ sequences, we used an artificial neural network to identify candidate viral capsid proteins, several of which formed virus-like particles when expressed in culture. These data further the understanding of viral sequence diversity and allow for high throughput documentation of the virosphere.

2019 ◽  
Author(s):  
Michael J. Tisza ◽  
Diana V. Pastrana ◽  
Nicole L. Welch ◽  
Brittany Stewart ◽  
Alberto Peretti ◽  
...  

SummaryAlthough it is suspected that there are millions of distinct viral species, fewer than 9,000 are catalogued in GenBank’s RefSeq database. We selectively enriched for and amplified the genomes of circular DNA viruses in over 70 animal samples, ranging from cultured soil nematodes to human tissue specimens. A bioinformatics pipeline, Cenote-Taker, was developed to automatically annotate over 2,500 circular genomes in a GenBank-compliant format. The new genomes belong to dozens of established and emerging viral families. Some appear to be the result of previously undescribed recombination events between ssDNA viruses and ssRNA viruses. In addition, hundreds of circular DNA elements that do not encode any discernable similarities to previously characterized sequences were identified. To characterize these “dark matter” sequences, we used an artificial neural network to identify candidate viral capsid proteins, several of which formed virus-like particles when expressed in culture. These data further the understanding of viral sequence diversity and allow for high throughput documentation of the virosphere.


2016 ◽  
Vol 90 (9) ◽  
pp. 4658-4669 ◽  
Author(s):  
Wei Zou ◽  
Fang Cheng ◽  
Weiran Shen ◽  
John F. Engelhardt ◽  
Ziying Yan ◽  
...  

ABSTRACTA novel chimeric parvoviral vector, rAAV2/HBoV1, in which the recombinant adeno-associated virus 2 (rAAV2) genome is pseudopackaged by the human bocavirus 1 (HBoV1) capsid, has been shown to be highly efficient in gene delivery to human airway epithelia (Z. Yan et al., Mol Ther 21:2181–2194, 2013,http://dx.doi.org/10.1038/mt.2013.92). In this vector production system, we used an HBoV1 packaging plasmid, pHBoV1NSCap, that harbors HBoV1 nonstructural protein (NS) and capsid protein (Cap) genes. In order to simplify this packaging plasmid, we investigated the involvement of the HBoV1 NS proteins in capsid protein expression. We found that NP1, a small NS protein encoded by the middle open reading frame, is required for the expression of the viral capsid proteins (VP1, VP2, and VP3). We also found that the other NS proteins (NS1, NS2, NS3, and NS4) are not required for the expression of VP proteins. We performed systematic analyses of the HBoV1 mRNAs transcribed from the pHBoV1NSCap packaging plasmid and its derivatives in HEK 293 cells. Mechanistically, we found that NP1 is required for both the splicing and the read-through of the proximal polyadenylation site of the HBoV1 precursor mRNA, essential functions for the maturation of capsid protein-encoding mRNA. Thus, our study provides a unique example of how a small viral nonstructural protein facilitates the multifaceted regulation of capsid gene expression.IMPORTANCEA novel chimeric parvoviral vector, rAAV2/HBoV1, expressing a full-length cystic fibrosis transmembrane conductance regulator (CFTR) gene, is capable of correcting CFTR-dependent chloride transport in cystic fibrosis human airway epithelium. Previously, an HBoV1 nonstructural and capsid protein-expressing plasmid, pHBoV1NSCap, was used to package the rAAV2/HBoV1 vector, but yields remained low. In this study, we demonstrated that the nonstructural protein NP1 is required for the expression of capsid proteins. However, we found that the other four nonstructural proteins (NS1 to -4) are not required for expression of capsid proteins. By mutating theciselements that function as internal polyadenylation signals in the capsid protein-expressing mRNA, we constructed a simple HBoV1 capsid protein-expressing gene that expresses capsid proteins as efficiently as pHBoV1NSCap does, and at similar ratios, but independently of NP1. Our study provides a foundation to develop a better packaging system for rAAV2/HBoV1 vector production.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Rafaela S. Fontenele ◽  
Matias Köhler ◽  
Lucas C. Majure ◽  
Jesús A. Avalos-Calleros ◽  
Gerardo R. Argüello-Astorga ◽  
...  

Viral metagenomic studies have enabled the discovery of many unknown viruses and revealed that viral communities are much more diverse and ubiquitous than previously thought. Some viruses have multiple genome components that are encapsidated either in separate virions (multipartite viruses) or in the same virion (segmented viruses). In this study, we identify what is possibly a novel bipartite plant-associated circular single-stranded DNA virus in a wild prickly pear cactus, Opuntia discolor, that is endemic to the Chaco ecoregion in South America. Two ~1.8 kb virus-like circular DNA components were recovered, one encoding a replication-associated protein (Rep) and the other a capsid protein (CP). Both of the inferred protein sequences of the Rep and CP are homologous to those encoded by members of the family Geminiviridae. These two putatively cognate components each have a nonanucleotide sequence within a likely hairpin structure that is homologous to the origins of rolling-circle replication (RCR), found in diverse circular single-stranded DNA viruses. In addition, the two components share similar putative replication-associated iterative sequences (iterons), which in circular single-stranded DNA viruses are important for Rep binding during the initiation of RCR. Such molecular features provide support for the possible bipartite nature of this virus, which we named utkilio virus (common name of the Opuntia discolor in South America) components A and B. In the infectivity assays conducted in Nicotiana benthamiana plants, only the A component of utkilio virus, which encodes the Rep protein, was found to move and replicate systemically in N. benthamiana. This was not true for component B, for which we did not detect replication, which may have been due to this being a defective molecule or because of the model plants (N. benthamiana) used for the infection assays. Future experiments need to be conducted with other plants, including O. discolor, to understand more about the biology of these viral components.


2020 ◽  
Vol 44 (3) ◽  
pp. 305-313 ◽  
Author(s):  
Joanna Kaczorowska ◽  
Lia van der Hoek

ABSTRACT Anelloviruses are small, single stranded circular DNA viruses. They are extremely diverse and have not been associated with any disease so far. Strikingly, these small entities infect most probably the complete human population, and there are no convincing examples demonstrating viral clearance from infected individuals. The main transmission could be via fecal-oral or airway route, as infections occur at an early age. However, due to the lack of an appropriate culture system, the virus–host interactions remain enigmatic. Anelloviruses are obviously mysterious viruses, and their impact on human life is not yet known, but, with no evidence of a disease association, a potential beneficial effect on human health should also be investigated.


2004 ◽  
Vol 78 (7) ◽  
pp. 3462-3469 ◽  
Author(s):  
Luis Del Valle ◽  
Sahnila Enam ◽  
Cesar Lara ◽  
Judith Miklossy ◽  
Kamel Khalili ◽  
...  

ABSTRACT B lymphocytes are known as a potential site for latency and reactivation of the human neurotropic polyomavirus, JC virus (JCV). In light of recent studies on the oncogenicity of JCV and the transforming ability of the JCV early protein, T antigen, we investigated the association of JCV with B-cell lymphomas of the central nervous system. Examination of 27 well-characterized clinical specimens by gene amplification and immunohistochemistry revealed the presence of DNA sequences corresponding to the JCV early genome and the late Agnoprotein in 22 samples and the JCV late genome encoding the viral capsid proteins in 8 samples. Expression of T antigen and that of Agnoprotein by immunohistochemistry were each detected in six specimens. No evidence of the production of viral capsid proteins was observed, ruling out productive infection of JCV in the tumor cells. The results from laser capture microdissection verified the presence of JCV T-antigen sequences in tumor cells with positive immunoreactivity to antibodies against the viral proteins T antigen and Agnoprotein. Due to previous reports demonstrating an association of the Epstein-Barr virus (EBV) with transformation of B lymphocytes, EBV DNA sequences and the EBV transforming protein, latent membrane protein 1 (LMP1), were analyzed in parallel. EBV LMP1 DNA sequences were detected in 16 of 23 samples, and LMP1 expression was detected in 16 samples, 5 of which exhibited positive immunoreactivity to JCV proteins. Double labeling demonstrated coexpression of JCV T antigen and EBV LMP1 in the same cells. The detection of the JCV genome in large numbers of B-cell lymphomas and its coexistence with EBV suggest a potential role for JCV in the pathogenesis of primary CNS lymphoma.


2018 ◽  
Vol 164 (1) ◽  
pp. 237-242 ◽  
Author(s):  
Cécile Richet ◽  
Simona Kraberger ◽  
Denis Filloux ◽  
Pauline Bernardo ◽  
Gordon W. Harkins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document