chromosomal origin
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 6)

H-INDEX

27
(FIVE YEARS 1)

2020 ◽  
Vol 11 ◽  
Author(s):  
Ana M. Oliveira Paiva ◽  
Erika van Eijk ◽  
Annemieke H. Friggen ◽  
Christoph Weigel ◽  
Wiep Klaas Smits

2020 ◽  
Author(s):  
Ana M. Oliveira Paiva ◽  
Erika van Eijk ◽  
Annemieke H. Friggen ◽  
Christoph Weigel ◽  
Wiep Klaas Smits

AbstractFaithful DNA replication is crucial for viability of cells across all kingdoms of life. Targeting DNA replication is a viable strategy for inhibition of bacterial pathogens. Clostridioides difficile is an important enteropathogen that causes potentially fatal intestinal inflammation. Knowledge about DNA replication in this organism is limited and no data is available on the very first steps of DNA replication. Here, we use a combination of in silico predictions and in vitro experiments to demonstrate that C. difficile employs a bipartite origin of replication that shows DnaA-dependent melting at oriC2, located in the dnaA-dnaN intergenic region. Analysis of putative origins of replication in different clostridia suggests that the main features of the origin architecture are conserved. This study is the first to characterize aspects of the origin region of C. difficile and contributes to our understanding of the initiation of DNA replication in clostridia.


Author(s):  
Kosmas Kosmidis ◽  
Kim Philipp Jablonski ◽  
Georgi Muskhelishvili ◽  
Marc-Thorsten Hütt

Author(s):  
Iñigo Prada-Luengo ◽  
Henrik D. Møller ◽  
Rasmus A. Henriksen ◽  
Qian Gao ◽  
Camilla E. Larsen ◽  
...  

Circular DNA of chromosomal origin form from all parts of eukaryotic genomes. In yeast, circular rDNA accumulates as cells divide, contributing to replicative aging. However, little is known about how other chromosome-deri ved circles segregate and contribute to geneticvariation as cells age. We identified circular DNA across the genome of young S. cerevisiae populations and their aged descendants. Young cells had highly diverse circular DNA populations, but lost 94% of the different circular DNA after 20 divisions. Circles present in both young and old cells were characterized by replication origins and included circles from unique regions of the genome, rDNA circles and telomeric Y’ circles. The loss in genetic heterogeneity in aged cells was accompanied by massive accumulation of rDNA circles >95% of all circular DNA. We discovered circles had flexible inherence patterns. Glucose limited conditions selected for cells with glucose-transporter gene circles, [HXT6/7circle], and up to 50% of cells in a population carried them. [HXT6/7circle] cells were eventually substituted by cells carrying stable chromosomal HXT6 HXT6/7 HXT7 amplifications, suggesting circular DNA were intermediates in chromosomal amplifications. In conclusion, DNA circles can offer a flexible adaptive solution but cells lose genetic heterogeneity from circular DNA as they undergo replicative aging.


2019 ◽  
Author(s):  
Sanjeet Kumar ◽  
Kanika Bansal ◽  
Prashant P. Patil ◽  
Amandeep Kaur ◽  
Satinder Kaur ◽  
...  

ABSTRACTWe report first complete genome sequence and analysis of an extreme drug resistance (XDR) nosocomial Stenotrophomonas maltophilia that is resistant to the mainstream drugs i.e. trimethoprim/sulfamethoxazole (TMP/SXT) and levofloxacin. Taxonogenomic analysis revealed it to be a novel genomospecies of the Stenotrophomonas maltophilia complex (Smc). Comprehensive genomic investigation revealed fourteen dynamic regions (DRs) exclusive to SM866, consisting of diverse antibiotic resistance genes, efflux pumps, heavy metal resistance, various transcriptional regulators etc. Further, resistome analysis of Smc clearly depicted SM866 to be an enriched strain, having diversified resistome consisting of sul1 and sul2 genes. Interestingly, SM866 does not have any plasmid but it harbors two diverse super-integrons of chromosomal origin. Apart from genes for sulfonamide resistance (sul1 and sul2), both of these integrons harbor an array of antibiotic resistance genes linked to ISCR (IS91-like elements common regions) elements. These integrons also harbor genes encoding resistance to commonly used disinfectants like quaternary ammonium compounds and heavy metals like mercury. Hence, isolation of a novel strain belonging to a novel sequence type (ST) and genomospecies with diverse array of resistance from a tertiary care unit of India indicates extent and nature of selection pressure driving XDRs in hospital settings. There is an urgent need to employ complete genome based investigation using emerging technologies for tracking emergence of XDR at the global level and designing strategies of sanitization and antibiotic regime.Impact StatementThe hospital settings in India have one of the highest usage of antimicrobials and heavy patient load. Our finding of a novel clinical isolate of S. maltophilia complex with two super-integrons harbouring array of antibiotic resistance genes along with antimicrobials resistance genes indicates the extent and the nature of selection pressures in action. Further, the presence of ISCR type of transposable elements on both integrons not only indicates its propensity to transfer resistome but also their chromosomal origin suggests possibilities for further genomic/phenotypic complexities. Such complex cassettes and strain are potential threat to global health care. Hence, there is an urgent need to employ cost-effective long read technologies to keep vigilance on novel and extreme antimicrobial resistance pathogens in populous countries. There is also need for surveillance for usage of antimicrobials for hygiene and linked/rapid co-evolution of extreme drug resistance in nosocomial pathogens. Our finding of the chromosomal encoding XDR will shed a light on the need of hour to understand the evolution of an opportunistic nosocomial pathogen belonging to S. maltophilia.RepositoriesComplete genome sequence of Stenotrophomonas maltophilia SM866: CP031058


2018 ◽  
Author(s):  
Andreas Hofmann ◽  
Jarno Mäkelä ◽  
David Sherratt ◽  
Dieter Heermann ◽  
Seán M. Murray

AbstractIn spite of much effort, many aspects of chromosome organisation and segregation in bacteria remain unclear. Even for Escherichia coli, the most widely studied bacterial model organism, we still do not know the underlying mechanisms. Like many other bacteria, the chromosomal origin of replication in E. coli is dynamically positioned throughout the cell cycle. Initially maintained at mid-cell, where replication occurs, origins are subsequently partitioned to opposite quarter positions. The Structural Maintenance of Chromosomes (SMC) complex, MukBEF, which is required for correct chromosome compaction and organisation, has been implicated in this behaviour but the mode of action is unknown. Here, we build on a recent self-organising model for the positioning of E. coli MukBEF, to propose an explanation for the positioning and partitioning of origins. We propose that a specific association of MukBEF with the origin region, results in a non-trivial feedback between the self-organising MukBEF gradient and the origins, leading to accurate positioning and partitioning as an emergent property. We compare the model to quantitative experimental data of origin dynamics and their colocalisation with MukBEF clusters and find excellent agreement. Overall, the model suggests that MukBEF and origins act together as a self-organising system for chromosome segregation and introduces protein self-organisation as an important consideration for future studies of chromosome dynamics.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Henrik Devitt Møller ◽  
Marghoob Mohiyuddin ◽  
Iñigo Prada-Luengo ◽  
M. Reza Sailani ◽  
Jens Frey Halling ◽  
...  

2018 ◽  
Vol 154 (4) ◽  
pp. 187-195
Author(s):  
Pavel Tesner ◽  
Marketa Vlckova ◽  
Jana Drabova ◽  
Jan Vseticka ◽  
Anna Klimova ◽  
...  

The prenatal finding of a small supernumerary marker chromosome (sSMC) is a challenge for genetic counseling. Our analytic algorithm is based on sSMC frequencies and multicolor FISH to accelerate the procedure. The chromosomal origin, size, and degree of mosaicism of the sSMC then determine the prognosis. We illustrate the effectiveness on 4 prenatally identified de novo mosaic sSMCs derived from chromosomes 13/21, X, 3, and 17. Three sSMC carriers had a good prognosis and apparently healthy children were born, showing no abnormality till the last examination at the age of 4 years. One case had a poor prognosis, and the parents decided to terminate the pregnancy. Our work contributes to the laboratory and clinical management of prenatally detected sSMCs. FISH is a reliable method for fast sSMC evaluation and prognosis assessment; it prevents unnecessary delays and uncertainty, allows informed decision making, and reduces unnecessary pregnancy terminations.


Sign in / Sign up

Export Citation Format

Share Document