scholarly journals Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wonil Chung ◽  
Jun Chen ◽  
Constance Turman ◽  
Sara Lindstrom ◽  
Zhaozhong Zhu ◽  
...  
2016 ◽  
Author(s):  
Timothy Shin Heng Mak ◽  
Robert Milan Porsch ◽  
Shing Wan Choi ◽  
Xueya Zhou ◽  
Pak Chung Sham

AbstractPolygenic scores (PGS) summarize the genetic contribution of a person’s genotype to a disease or phenotype. They can be used to group participants into different risk categories for diseases, and are also used as covariates in epidemiological analyses. A number of possible ways of calculating polygenic scores have been proposed, and recently there is much interest in methods that incorporate information available in published summary statistics. As there is no inherent information on linkage disequilibrium (LD) in summary statistics, a pertinent question is how we can make use of LD information available elsewhere to supplement such analyses. To answer this question we propose a method for constructing PGS using summary statistics and a reference panel in a penalized regression framework, which we call lassosum. We also propose a general method for choosing the value of the tuning parameter in the absence of validation data. In our simulations, we showed that pseudovalidation often resulted in prediction accuracy that is comparable to using a dataset with validation phenotype and was clearly superior to the conservative option of setting the tuning parameter of lassosum to its lowest value. We also showed that lassosum achieved better prediction accuracy than simple clumping and p-value thresholding in almost all scenarios. It was also substantially faster and more accurate than the recently proposed LDpred.


Author(s):  
Pascalis Kadaro Matthew ◽  
Abubakar Yahaya

<p>Some few decades ago, penalized regression techniques for linear regression have been developed specifically to reduce the flaws inherent in the prediction accuracy of the classical ordinary least squares (OLS) regression technique. In this paper, we used a diabetes data set obtained from previous literature to compare three of these well-known techniques, namely: Least Absolute Shrinkage Selection Operator (LASSO), Elastic Net and Correlation Adjusted Elastic Net (CAEN). After thorough analysis, it was observed that CAEN generated a less complex model.</p>


2018 ◽  
Author(s):  
Sahir R Bhatnagar ◽  
Yi Yang ◽  
Tianyuan Lu ◽  
Erwin Schurr ◽  
JC Loredo-Osti ◽  
...  

AbstractComplex traits are known to be influenced by a combination of environmental factors and rare and common genetic variants. However, detection of such multivariate associations can be compromised by low statistical power and confounding by population structure. Linear mixed effects models (LMM) can account for correlations due to relatedness but have not been applicable in high-dimensional (HD) settings where the number of fixed effect predictors greatly exceeds the number of samples. False positives or false negatives can result from two-stage approaches, where the residuals estimated from a null model adjusted for the subjects’ relationship structure are sub-sequently used as the response in a standard penalized regression model. To overcome these challenges, we develop a general penalized LMM with a single random effect called ggmix for simultaneous SNP selection and adjustment for population structure in high dimensional prediction models. We develop a blockwise coordinate descent algorithm with automatic tuning parameter selection which is highly scalable, computationally efficient and has theoretical guarantees of convergence. Through simulations and three real data examples, we show that ggmix leads to more parsimonious models compared to the two-stage approach or principal component adjustment with better prediction accuracy. Our method performs well even in the presence of highly correlated markers, and when the causal SNPs are included in the kinship matrix. ggmix can be used to construct polygenic risk scores and select instrumental variables in Mendelian randomization studies. Our algorithms are available in an R package (https://github.com/greenwoodlab/ggmix).1Author SummaryThis work addresses a recurring challenge in the analysis and interpretation of genetic association studies: which genetic variants can best predict and are independently associated with a given phenotype in the presence of population structure ? Not controlling confounding due to geographic population structure, family and/or cryptic relatedness can lead to spurious associations. Much of the existing research has therefore focused on modeling the association between a phenotype and a single genetic variant in a linear mixed model with a random effect. However, this univariate approach may miss true associations due to the stringent significance thresholds required to reduce the number of false positives and also ignores the correlations between markers. We propose an alternative method for fitting high-dimensional multivariable models, which selects SNPs that are independently associated with the phenotype while also accounting for population structure. We provide an efficient implementation of our algorithm and show through simulation studies and real data examples that our method outperforms existing methods in terms of prediction accuracy and controlling the false discovery rate.


2021 ◽  
Author(s):  
Shan He ◽  
Granot-Hershkovitz Einat ◽  
Ying Zhang ◽  
Jan Bressler ◽  
Wassim Tarraf ◽  
...  

INTRODUCTION: Blood metabolomics-based biomarkers may be useful to predict measures of neurocognitive aging. METHODS: We tested the association between 707 blood metabolites measured in 1,451 participants from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), with MCI and global cognitive change assessed seven years later. We further used Lasso penalized regression to construct a metabolomics risk score (MRS) that predicts MCI, potentially identifying a different set of metabolites than those discovered in individual-metabolite analysis. RESULTS: We identified 20 metabolites associated with MCI and/or global cognitive change. Six of them were novel and 14 were previously reported as associated with neurocognitive aging outcomes. The MCI MRS comprised 61 metabolites and improved prediction accuracy from 84% (minimally adjusted model) to 89% in the entire dataset and from 75% to 87% among APOE-ε4 carriers. Conclusions: Blood metabolites may serve as biomarkers identifying individuals at risk for MCI among U.S. Hispanics/Latinos.


2009 ◽  
Author(s):  
Benjamin Scheibehenne ◽  
Andreas Wilke ◽  
Peter M. Todd
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document