scholarly journals Voltage-dependent gating of SV channel TPC1 confers vacuole excitability

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Dawid Jaślan ◽  
Ingo Dreyer ◽  
Jinping Lu ◽  
Ronan O’Malley ◽  
Julian Dindas ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Jinping Lu ◽  
Ingo Dreyer ◽  
Miles Sasha Dickinson ◽  
Sabine Panzer ◽  
Dawid Jaslan ◽  
...  

To fire action-potential-like electrical signals, the vacuole membrane requires the depolarization-activated two-pore channel TPC1, also called Slowly activating Vacuolar SV channel. The TPC1/SV channel, encoded by the TPC1 gene, functions as a voltage-dependent and Ca2+-regulated potassium channel. TPC1 currents are activated by a rise in cytoplasmic Ca2+ but blocked by luminal Ca2+. In search for species-dependent functional TPC1 channel variants, we studied polymorphic amino acids contributing to luminal Ca2+ sensitivity. We found that the acidic residues Glu457, Glu605 and Asp606 of the Ca2+-sensitive Arabidopsis AtTPC1 channel were neutralized by either asparagine or alanine in Vicia faba and many other Fabaceae as well. When expressed in the Arabidopsis loss-of-AtTPC1 function background, the wild type VfTPC1 was hypersensitive to vacuole depolarization and insensitive to blocking luminal Ca2+. When AtTPC1 was mutated for the three VfTPC1-homologous polymorphic site residues, the Arabidopsis At-VfTPC1 channel mutant gained VfTPC1-like voltage and luminal Ca2+ insensitivity that together made vacuoles hyperexcitable. These findings indicate that natural TPC1 channel variants in plant families exist which differ in vacuole excitability and very likely respond to changes in environmental settings of their ecological niche.


2018 ◽  
Vol 45 (2) ◽  
pp. 83 ◽  
Author(s):  
Igor Pottosin ◽  
Oxana Dobrovinskaya

Two-pore cation (TPC) channels form functional dimers in membranes, delineating acidic intracellular compartments such as vacuoles in plants and lysosomes in animals. TPC1 is ubiquitously expressed in thousands of copies per vacuole in terrestrial plants, where it is known as slow vacuolar (SV) channel. An SV channel possesses high permeability for Na+, K+, Mg2+, and Ca2+, but requires high (tens of μM) cytosolic Ca2+ and non-physiological positive voltages for its full activation. Its voltage dependent activation is negatively modulated by physiological concentrations of vacuolar Ca2+, Mg2+and H+. Double control of the SV channel activity from cytosolic and vacuolar sides keeps its open probability at a minimum and precludes a potentially harmful global Ca2+ release. But this raises the question of what such’ inactive’ channel could be good for? One possibility is that it is involved in ultra-local Ca2+ signalling by generating ‘hotspots’ – microdomains of extremely high cytosolic Ca2+. Unexpectedly, recent studies have demonstrated the essential role of the TPC1 in the systemic Ca2+ signalling, and the crystal structure of plant TPC1, which became available this year, unravels molecular mechanisms underlying voltage and Ca2+ gating. This review emphasises the significance of these ice-breaking findings and sets a new perspective for the TPC1-based Ca2+ signalling.


Author(s):  
A. Engel ◽  
D.L. Dorset ◽  
A. Massalski ◽  
J.P. Rosenbusch

Porins represent a group of channel forming proteins that facilitate diffusion of small solutes across the outer membrane of Gram-negative bacteria, while excluding large molecules (>650 Da). Planar membranes reconstituted from purified matrix porin (OmpF protein) trimers and phospholipids have allowed quantitative functional studies of the voltage-dependent channels and revealed concerted activation of triplets. Under the same reconstitution conditions but using high protein concentrations porin aggregated to 2D lattices suitable for electron microscopy and image processing. Depending on the lipid-to- protein ratio three different crystal packing arrangements were observed: a large (a = 93 Å) and a small (a = 79 Å) hexagonal and a rectangular (a = 79 Å b = 139 Å) form with p3 symmetry for the hexagonal arrays. In all crystal forms distinct stain filled triplet indentations could be seen and were found to be morphologically identical within a resolution of (22 Å). It is tempting to correlate stain triplets with triple channels, but the proof of this hypothesis requires an analysis of the structure in 3 dimensions.


Author(s):  
Xiao-Wei Guo

Voltage-dependent, anion-selective channels (VDAC) are formed in the mitochondrial outer membrane (mitOM) by a 30-kDa polypeptide. These channels form ordered 2D arrays when mitOMs from Neurospora crassa are treated with soluble phospholipase A2. We obtain low-dose electron microscopic images of unstained specimens of VDAC crystals preserved in vitreous ice, using a Philips EM420 equipped with a Gatan cryo-transfer stage. We then use correlation analysis to compute average projections of the channel crystals. The procedure involves Fourier-filtration of a region within a crystal field to obtain a preliminary average that is subsequently cross-correlated with the entire crystal. Subregions are windowed from the crystal image at coordinates of peaks in the cross-correlation function (CCF, see Figures 1 and 2) and summed to form averages (Figure 3).The VDAC channel forms several different types of crystalline arrays in mitOMs. The polymorph first observed during phospholipase treatment is a parallelogram array (a=13 run, b=11.5 run, θ==109°) containing 6 water-filled pores per unit cell. Figure 1 shows the CCF of a sub-field of such an “oblique” array used to compute the correlation average of Figure 3A. With increased phospholipase treatment, other polymorphs are observed, often co-existing within the same crystal. For example, two distinct (but closely related) types of lattices occur in the field corresponding to the CCF of Figure 2: a “contracted” version of the parallelogram lattice (a=13 run, b=10 run, θ=99°), and a near-rectangular lattice (a=8.5 run, b=5 nm). The pattern of maxima in this CCF suggests that a third, near-hexagonal lattice (a=4.5 nm) may also be present. The correlation averages of Figures 3B-D were computed from polycrystalline fields, using peak coordinates in regions of CCFs corresponding to each of the three lattice types.


Author(s):  
Edna S. Kaneshiro

It is currently believed that ciliary beating results from microtubule sliding which is restricted in regions to cause bending. Cilia beat can be modified to bring about changes in beat frequency, cessation of beat and reversal in beat direction. In ciliated protozoans these modifications which determine swimming behavior have been shown to be related to intracellular (intraciliary) Ca2+ concentrations. The Ca2+ levels are in turn governed by the surface ciliary membrane which exhibits increased Ca2+ conductance (permeability) in response to depolarization. Mutants with altered behaviors have been isolated. Pawn mutants fail to exhibit reversal of the effective stroke of ciliary beat and therefore cannot swim backward. They lack the increased inward Ca2+ current in response to depolarizing stimuli. Both normal and pawn Paramecium made leaky to Ca2+ by Triton extrac¬tion of the surface membrane exhibit backward swimming only in reactivating solutions containing greater than IO-6 M Ca2+ Thus in pawns the ciliary reversal mechanism itself is left operational and only the control mechanism at the membrane is affected. The topographic location of voltage-dependent Ca2+ channels has been identified as a component of the ciliary mem¬brane since the inward Ca2+ conductance response is eliminated by deciliation and the return of the response occurs during cilia regeneration. Since the ciliary membrane has been impli¬cated in the control of Ca2+ levels in the cilium and therefore is the site of at least one kind of control of microtubule sliding, we have focused our attention on understanding the structure and function of the membrane.


Sign in / Sign up

Export Citation Format

Share Document