sv channel
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jinping Lu ◽  
Ingo Dreyer ◽  
Miles Sasha Dickinson ◽  
Sabine Panzer ◽  
Dawid Jaslan ◽  
...  

To fire action-potential-like electrical signals, the vacuole membrane requires the depolarization-activated two-pore channel TPC1, also called Slowly activating Vacuolar SV channel. The TPC1/SV channel, encoded by the TPC1 gene, functions as a voltage-dependent and Ca2+-regulated potassium channel. TPC1 currents are activated by a rise in cytoplasmic Ca2+ but blocked by luminal Ca2+. In search for species-dependent functional TPC1 channel variants, we studied polymorphic amino acids contributing to luminal Ca2+ sensitivity. We found that the acidic residues Glu457, Glu605 and Asp606 of the Ca2+-sensitive Arabidopsis AtTPC1 channel were neutralized by either asparagine or alanine in Vicia faba and many other Fabaceae as well. When expressed in the Arabidopsis loss-of-AtTPC1 function background, the wild type VfTPC1 was hypersensitive to vacuole depolarization and insensitive to blocking luminal Ca2+. When AtTPC1 was mutated for the three VfTPC1-homologous polymorphic site residues, the Arabidopsis At-VfTPC1 channel mutant gained VfTPC1-like voltage and luminal Ca2+ insensitivity that together made vacuoles hyperexcitable. These findings indicate that natural TPC1 channel variants in plant families exist which differ in vacuole excitability and very likely respond to changes in environmental settings of their ecological niche.


Author(s):  
Kenji Hashimoto ◽  
Mateusz Koselski ◽  
Shoko Tsuboyama ◽  
Halina Dziubinska ◽  
Kazimierz Trębacz ◽  
...  

Abstract The two-pore channel (TPC) family is widely conserved in eukaryotes. Many vascular plants, including Arabidopsis and rice, possess a single TPC gene which functions as a slow vacuolar (SV) channel—voltage-dependent cation-permeable channel located in the vacuolar membrane (tonoplast). On the other hand, a liverwort Marchantia polymorpha genome encodes three TPC homologs: MpTPC1 is similar to TPCs in vascular plants (type 1 TPC), while MpTPC2 and MpTPC3 are classified into a distinctive group (type 2 TPC). Phylogenetic analysis suggested that the type 2 TPC emerged before the land colonization in plant evolution and was lost in vascular plants and hornworts. All of the three MpTPCs were shown to be localized at the tonoplast. We generated knockout mutants of tpc1, tpc2, tpc3, and tpc2 tpc3 double mutant by CRISPR/Cas9 genome editing and performed patch-clamp analyses of isolated vacuoles. The SV channel activity was abolished in the Mptpc1 loss-of-function mutant (Mptpc1-1KO), while Mptpc2-1KO, Mptpc3-1KO, and Mptpc2-2/tpc3-2KO double mutant exhibited similar activity to the wild type, indicating that MpTPC1 (type 1) is solely responsible for the SV channel activity. Activators of mammalian TPC channels, PI(3,5)P2, and, NAADP, did not affect the ion channel activity of any MpTPCs. These results indicate that the type 1 TPCs, which are well conserved in all land plant species, encode the SV channel, while the type 2 TPCs likely encode other tonoplast cation channel(s) distinct from the SV channel and animal TPC channels.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Bilal Aghoutane ◽  
Mohammed El Ghzaoui ◽  
Hanan El Faylali

AbstractThe aim of this work consists in characterizing the Terahertz (THz) propagation channel in an indoor environment, in order to propose a channel model for THz bands. We first described a propagation loss model by taking into account the attenuation of the channel as a function of distance and frequency. The impulse response of the channel is then described by a set of rays, characterized by their amplitude, their delay and their phase. Apart from the frequency selective nature, path loss in THz band is also an others issue associated with THz communication systems. This work based on the conventional Saleh-Valenzuela (SV) model which is intended for indoor scenarios. In this paper, we have introduced random variables as Line of sight (LOS) component, and then merging it with the SV channel model to adopt it to the THz context. From simulation, we noted an important effect when the distance between the transmitter and the receiver change. This effect produces variations in frequency loss. The simulations carried out from this model show that to enhance the performance of THz system it is recommended to transmit information over transmission windows instead over the whole band.


2021 ◽  
Vol 11 ◽  
Author(s):  
Igor Pottosin ◽  
Miguel Olivas-Aguirre ◽  
Oxana Dobrovinskaya ◽  
Isaac Zepeda-Jazo ◽  
Sergey Shabala

This work critically discusses the direct and indirect effects of natural polyamines and their catabolites such as reactive oxygen species and γ-aminobutyric acid on the activity of key plant ion-transporting proteins such as plasma membrane H+ and Ca2+ ATPases and K+-selective and cation channels in the plasma membrane and tonoplast, in the context of their involvement in stress responses. Docking analysis predicts a distinct binding for putrescine and longer polyamines within the pore of the vacuolar TPC1/SV channel, one of the key determinants of the cell ionic homeostasis and signaling under stress conditions, and an additional site for spermine, which overlaps with the cytosolic regulatory Ca2+-binding site. Several unresolved problems are summarized, including the correct estimates of the subcellular levels of polyamines and their catabolites, their unexplored effects on nucleotide-gated and glutamate receptor channels of cell membranes and Ca2+-permeable and K+-selective channels in the membranes of plant mitochondria and chloroplasts, and pleiotropic mechanisms of polyamines’ action on H+ and Ca2+ pumps.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Dawid Jaślan ◽  
Ingo Dreyer ◽  
Jinping Lu ◽  
Ronan O’Malley ◽  
Julian Dindas ◽  
...  
Keyword(s):  

2018 ◽  
Vol 11 (6) ◽  
pp. 764-775 ◽  
Author(s):  
Rainer Hedrich ◽  
Thomas D. Mueller ◽  
Dirk Becker ◽  
Irene Marten

2018 ◽  
Vol 45 (2) ◽  
pp. 83 ◽  
Author(s):  
Igor Pottosin ◽  
Oxana Dobrovinskaya

Two-pore cation (TPC) channels form functional dimers in membranes, delineating acidic intracellular compartments such as vacuoles in plants and lysosomes in animals. TPC1 is ubiquitously expressed in thousands of copies per vacuole in terrestrial plants, where it is known as slow vacuolar (SV) channel. An SV channel possesses high permeability for Na+, K+, Mg2+, and Ca2+, but requires high (tens of μM) cytosolic Ca2+ and non-physiological positive voltages for its full activation. Its voltage dependent activation is negatively modulated by physiological concentrations of vacuolar Ca2+, Mg2+and H+. Double control of the SV channel activity from cytosolic and vacuolar sides keeps its open probability at a minimum and precludes a potentially harmful global Ca2+ release. But this raises the question of what such’ inactive’ channel could be good for? One possibility is that it is involved in ultra-local Ca2+ signalling by generating ‘hotspots’ – microdomains of extremely high cytosolic Ca2+. Unexpectedly, recent studies have demonstrated the essential role of the TPC1 in the systemic Ca2+ signalling, and the crystal structure of plant TPC1, which became available this year, unravels molecular mechanisms underlying voltage and Ca2+ gating. This review emphasises the significance of these ice-breaking findings and sets a new perspective for the TPC1-based Ca2+ signalling.


2010 ◽  
Vol 98 (3) ◽  
pp. 534a-535a ◽  
Author(s):  
Paul Vijay K. Gutla ◽  
Armando Carpaneto ◽  
Alex Costa ◽  
Fiorella Lo Schiavo ◽  
Franco Gambale
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document