scholarly journals Cr-spinel records metasomatism not petrogenesis of mantle rocks

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamed Gamal El Dien ◽  
Shoji Arai ◽  
Luc-Serge Doucet ◽  
Zheng-Xiang Li ◽  
Youngwoo Kil ◽  
...  

Abstract Mantle melts provide a window on processes related to global plate tectonics. The composition of chromian spinel (Cr-spinel) from mafic-ultramafic rocks has been widely used for tracing the geotectonic environments, the degree of mantle melting and the rate of mid-ocean ridge spreading. The assumption is that Cr-spinel’s core composition (Cr# = Cr/(Cr + Al)) is homogenous, insensitive to post-formation modification and therefore a robust petrogenetic indicator. However, we demonstrate that the composition of Cr-spinel can be modified by fluid/melt-rock interactions in both sub-arc and sub-mid oceanic mantle. Metasomatism can produce Al-Cr heterogeneity in Cr-spinel that lowers the Cr/Al ratio, and therefore modifies the Cr#, making Cr# ineffective as a geotectonic and mantle melting indicator. Our analysis also demonstrates that Cr-spinel is a potential sink for fluid-mobile elements, especially in subduction zone environments. The heterogeneity of Cr# in Cr-spinel can, therefore, be used as an excellent tracer for metasomatic processes.

Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 464 ◽  
Author(s):  
Satoko Ishimaru ◽  
Yuji Saikawa ◽  
Makoto Miura ◽  
Osman Parlak ◽  
Shoji Arai

The Mersin ophiolite, Turkey, is of typical arc type based on geochemistry of crustal rocks without any signs of mid-ocean ridge (MOR) affinity. We examined its ultramafic rocks to reveal sub-arc mantle processes. Mantle peridotites, poor in clinopyroxene (<1.0 vol.%), show high Fo content of olivine (90–92) and Cr# [=Cr/(Cr + Al) atomic ratio] (=0.62–0.77) of chromian spinel. NiO content of olivine is occasionally high (up to 0.5 wt.%) in the harzburgite. Moho-transition zone (MTZ) dunite is also highly depleted, i.e., spinel is high Cr# (0.78–0.89), clinopyroxene is poor in HREE, and olivine is high Fo (up to 92), but relatively low in NiO (0.1–0.4 wt.%). The harzburgite is residue after high-degree mantle melting, possibly assisted by slab-derived fluid. The high-Ni character of olivine suggests secondary metasomatic formation of olivine-replacing orthopyroxene although replacement textures are unclear. The MTZ dunite is of replacive origin, resulted from interaction between Mg-rich melt released from harzburgite diapir and another harzburgite at the diapir roof. The MTZ dunite is the very place that produced the boninitic and replacive dunite. The MTZ is thicker (>1 km) in Mersin than in MOR-related ophiolite (mostly < 500 m), and this is one of the features of arc-type ophiolite.


2021 ◽  
Author(s):  
Nelson Boniface ◽  
Tatsuki Tsujimori

ABSTRACT Records of high-pressure/low-temperature (HP-LT) metamorphic interfaces are not common in Precambrian orogens. It should be noted that the association of HP-LT metamorphic interfaces and strongly deformed ocean plate stratigraphy that form accretionary prisms between trenches and magmatic arcs are recognized as hallmark signatures of modern plate tectonics. In East Africa (Tanzania), the Paleoproterozoic Ubendian-Usagaran Belt records a HP-LT metamorphic interface that we consider as a centerpiece in reviewing the description of tectonic units of the Ubendian-Usagaran Belt and defining a new tectonic model. Our new U-Pb zircon age and the interpretations from existing data reveal an age between 1920 and 1890 Ma from the kyanite bearing eclogites. This establishment adds to the information of already known HP-LT metamorphic events at 2000 Ma, 1890–1860 Ma, and 590–520 Ma from the Ubendian-Usagaran Belt. Arc–back-arc signatures from eclogites imply that their mafic protoliths were probably eroded from arc basalt above a subduction zone and were channeled into a subduction zone as mélanges and got metamorphosed. The Ubendian-Usagaran events also record rifting, arc and back-arc magmatism, collisional, and hydrothermal events that preceded or followed HP-LT tectonic events. Our new tectonic subdivision of the Ubendian Belt is described as: (1) the western Ubendian Corridor, mainly composed of two Proterozoic suture zones (subduction at 2000, 1920–1890, Ma and 590–500 Ma) in the Ufipa and Nyika Terranes; (2) the central Ubendian Corridor, predominated by metamorphosed mafic-ultramafic rocks in the Ubende, Mbozi, and Upangwa Terranes that include the 1890–1860 Ma eclogites with mid-ocean ridge basalt affinity in the Ubende Terrane; and (3) the eastern Ubendian Corridor (the Katuma and Lupa Terranes), characterized by reworked Archean crust.


2008 ◽  
Vol 45 (8) ◽  
pp. 879-896 ◽  
Author(s):  
Yana Fedortchouk ◽  
William LeBarge

Source rocks for the platinum group minerals (PGM), historically reported in a number of Yukon placers, remain either unknown or poorly understood. A study of heavy-mineral samples from five creeks draining bedrock in west and central Yukon was undertaken to confirm the presence of placer platinum, to determine which mafic–ultramafic rock is the source of PGM in Kluane area, southern Yukon, and to explain platinum occurrences in Canadian and Florence creeks, central Yukon, where no known mafic–ultramafic rocks are present. Diverse composition of chromian spinel and clinopyroxenes from three creeks in the Kluane area indicate several sources of ultramafic rocks, including fragments of Alpine-type peridotites formed in back-arc basin and mid-ocean-ridge settings, and a source rock for zoned zinc-rich chromites of unknown origin. The Kluane ultramafic sills are the most likely source of PGM in this area. The heavy-mineral sample from Canadian Creek returned one PGM grain, no chromite, and abundant ilmenite and titanomagnetite. A group of chromium-rich magnesian ilmenites (∼4 wt.% MgO) closely match the composition of ilmenites from continental mafic intrusions produced during continental rift magmatism. This supports the continental rifting event recently proposed for this part of Yukon and indicates the economic potential of the Canadian Creek platinum occurrence. Composition of spinel from Florence Creek sample indicates an Alaskan-type intrusion as the source of PGM.


2021 ◽  
Author(s):  
Souvik Das ◽  
Asish R. Basu

ABSTRACT The southeast Ladakh (India) area displays one of the best-preserved ophiolite sections in this planet, in places up to 10 km thick, along the southern bank of the Indus River. Recently, in situ, ultrahigh-pressure (UHP) mineralogical evidence from the mantle transition zone (MTZ; ∼410–660 km) with diamond and reduced fluids were discovered from two peridotite bodies in the basal mantle part of this Indus ophiolite. Ultrahigh-pressure phases were also found by early workers from podiform chromitites of another coeval Neo-Tethyan ophiolite in southern Tibet. However, the MTZ phases in the Indus ophiolite are found in silicate peridotites, but not in metallic chromitites, and the peridotitic UHP phases show systematic and contiguous phase transitions from the MTZ to shallower depth, unlike the discrete UHP inclusions, all in Tibetan chromitites. We observe consistent change in oxygen fugacity (fO2) and fluid composition from (C-H + H2) to (CO2 + H2O) in the upwelling peridotitic mantle, causing melting to produce mid-ocean-ridge basalt (MORB). At shallow depths (&lt;100 km) the free water stabilizes into hydrous phases, such as pargasitic amphibole, capable of storing water and preventing melting. Our discoveries provide unique insights into deep sub-oceanic-mantle processes, and link deep-mantle upwelling and MORB genesis. Moreover, the tectonic setting of Neo-Tethyan ophiolites has been a difficult problem since the birth of the plate-tectonics concept. This problem for the origin of ophiolites in mid-ocean-ridge versus supra-subduction zone settings clearly confused the findings from Indus ophiolites. However, in this contribution, we provide arguments in favor of mid-ocean-ridge origin for Indus ophiolite. In addition, we venture to revisit the “historical contingency” model of E.M. Moores and others for Neo-Tethyan ophiolite genesis based on the available evidence and have found that our new results strongly support the “historical contingency” model.


Lithosphere ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 821-833
Author(s):  
Wen-Jun Hu ◽  
Hong Zhong ◽  
Wei-Guang Zhu ◽  
Zhong-Jie Bai

Abstract The Paleozoic Jinshajiang ophiolitic mélange in southwest China marks an important branch ocean (i.e., the Jinshajiang Ocean) of the Paleo-Tethys. Basic-intermediate rocks are widespread features in the mélange; their formation age is well known, but the petrogenesis has not been well studied, which means that the evolutionary history of the Jinshajiang Ocean is not well constrained. To understand the nature of the mélange and the ocean, we present a set of elemental and isotopic data from two typical crustal sequences in two areas of the Jinshajiang ophiolitic mélange, Zhiyong and Baimaxueshan. The basalts in the ca. 343 Ma Zhiyong crustal sequence show mid-ocean-ridge basalt–like geochemical compositions with Nb/La ratios of 0.98–1.15 and εNd(t) values of +6.5 to +7.7, indicating that the basalts formed in the spreading ridge of the ocean. In contrast, the 283 Ma Baimaxueshan crustal sequence consists of gabbros and basaltic-andesitic lavas, which have an arc affinity with Nb/La ratios of 0.54–0.67 and εNd(t) values of +5.1 to +6.5. The geochemical differences were not caused by crustal assimilation but reflect mantle metasomatism by fluids dehydrated from the subducting slab. Therefore, we propose that the Zhiyong and Baimaxueshan crustal sequences formed in seafloor spreading and subduction settings, which were related to the opening and closure of the ocean, respectively.


2020 ◽  
Vol 105 (4) ◽  
pp. 479-497 ◽  
Author(s):  
Xie-Yan Song ◽  
Kai-Yuan Wang ◽  
Stephen J. Barnes ◽  
Jun-Nian Yi ◽  
Lie-Meng Chen ◽  
...  

Abstract Chromite is one of the earliest crystallized minerals from mafic melts and has been used as an important “petrogenetic indicator.” Its composition may be modified by interaction with intercumulate melt and adjacent minerals. Thus, chromite in mafic-ultramafic rocks contains clues to the geochemical affinity, evolution, and mantle source of its parent magmas. The Devonian Xiarihamu intrusion, located in the East Kunlun Orogenic Belt in the northern Tibet Plateau, China, hosts a very large disseminated Ni-Co sulfide deposit. This study focuses on geochemistry of the chromite enclosed in olivine of ultramafic rocks of the intrusion. Enrichments in Mg and Al in the rim of the chromite indicate only minor effects of alteration on the compositions of the chromite. The chromites enclosed in the olivines with forsterite percentage (Fo) lower than 87 are characterized by large variations in major and trace elements, such as large ranges of Cr·100/(Cr+Al) (Cr# = 15–47), Mg·100/(Mg+Fe2+) (Mg# = 41–65), and Al2O3 (= 26–53 wt%) as well as 380–3100 ppm V, 70–380 ppm Ga, and 1100–16300 ppm Zn. The chromites display positive correlations between Cr/(Cr+Al) and Ti, Mn, V, Ga, and Sc, inconsistent with fractional crystallization but indicative of an interaction between the chromites, intercumulate melts and hosting minerals. In contrast, chromites hosted in olivine with Fo &gt; 87 in harzburgite have small variations in Cr# (ranging from 37 to 41), Mg# (48 to 51), and Al2O3 (30 to 35 wt%) as well as restricted variation in trace elements, indicating relatively weak interaction with trapped liquid and adjacent phases; these compositions are close to those of the most primitive, earliest crystallized chromites. The most primitive chromite has similarities with chromite in mid-ocean ridge basalt (MORB) in TiO2 and Al2O3 contents (0.19–0.32 and 27.9–36.3 wt%, respectively) and depletion of Sc and enrichment of Ga and Zn relative to MORB chromite. The geochemistry of the chromite indicates a partial melting of the asthenospheric mantle that was modified by melts derived from the subduction slab at garnet-stable pressures.


2013 ◽  
Vol 40 (2) ◽  
pp. 94 ◽  
Author(s):  
Cees R. Van Staal ◽  
Dave M. Chew ◽  
Alexandre Zagorevski ◽  
Vicki McNicoll ◽  
James Hibbard ◽  
...  

The Birchy Complex of the Baie Verte Peninsula, northwestern Newfoundland, comprises an assemblage of mafic schist, ultramafic rocks, and metasedimentary rocks that are structurally sandwiched between overlying ca. 490 Ma ophiolite massifs of the Baie Verte oceanic tract and underlying metasedimentary rocks of the Fleur de Lys Supergroup of the Appalachian Humber margin. Birchy Complex gabbro yielded a Late Ediacaran U–Pb zircon ID–TIMS age of 558.3 ± 0.7 Ma, whereas gabbro and an intermediate tuffaceous schist yielded LA–ICPMS concordia zircon ages of 564 ± 7.5 Ma and 556 ± 4 Ma, respectively. These ages overlap the last phase of rift-related magmatism observed along the Humber margin of the northern Appalachians (565–550 Ma). The associated ultramafic rocks were exhumed by the Late Ediacaran and shed detritus into the interleaved sedimentary rocks. Psammite in the overlying Flat Point Formation yielded a detrital zircon population typical of the Laurentian Humber margin in the northern Appalachians. Age relationships and characteristics of the Birchy Complex and adjacent Rattling Brook Group suggest that the ultramafic rocks represent slices of continental lithospheric mantle exhumed onto the seafloor shortly before or coeval with magmatic accretion of mid-ocean ridge basalt-like mafic rocks. Hence, they represent the remnants of an ocean – continent transition zone formed during hyperextension of the Humber margin prior to establishment of a mid-ocean ridge farther outboard in the Iapetus Ocean. We propose that microcontinents such as Dashwoods and the Rattling Brook Group formed as a hanging wall block and an extensional crustal allochthon, respectively, analogous to the isolation of the Briançonnais block during the opening of the Alpine Ligurian–Piemonte and Valais oceanic seaways.SOMMAIRELe complexe de Birchy de la péninsule de Baie Verte, dans le nord-ouest de Terre-Neuve, est constitué d’un assemblage de schistes mafiques, de roches ultramafiques et de métasédiments qui sont coincés entre des massifs ophiolitiques d’ascendance océanique de la Baie Verte au-dessus, et des métasédiments du Supergroupe de Fleur de Lys de la marge de Humber des Appalaches en-dessous. Le complexe de gabbro de Birchy a donné une datation U-Pb sur zircon ID-TIMS correspondant à la fin de l’Édiacarien, soit 558,3 ± 0,7 Ma, alors qu’un gabbro et un schiste tufacé intermédiaire montrent une datation LA-ICP-MS Concordia sur zircon de 564 ± 7,5 Ma et 556 ± 4 Ma, respectivement. Ces datations chevauchent la dernière phase de magmatisme de rift observée le long de la marge Humber des Appalaches du Nord (565-550 Ma). Les roches ultramafiques associées ont été exhumées vers la fin de l’Édiacarien et leurs débris ont été imbriqués dans des roches sédimentaires. Les psammites de la Formation de Flat Point susjacente ont donné une population de zircons détritiques typique de la marge laurentienne de Humber des Appalaches du Nord. Les relations chronologiques et les caractéristiques du complexe de Birchy et du groupe de Rattling Brook adjacent, permettent de penser que ces roches ultramafiques pourraient être des écailles de manteau lithosphérique continental qui auraient été exhumées sur le plancher océanique peu avant ou en même temps que l’accrétion magmatique de roches mafiques basaltiques de type dorsale médio-océanique. Par conséquent, elles seraient des vestiges d’une zone de transition océan-continent formée au cours de l’hyper-extension de la marge de Humber avant l’apparition d’une dorsale médio-océanique plus loin au large dans l’océan Iapétus. Nous proposons que des microcontinents comme de Dashwoods et du groupe de Rattling Brook ont constitués respectivement un bloc de toit et un allochtone crustal d’extension, de la même manière que le bloc Briançonnais a été isolé lors de l’ouverture des bras océaniques alpins de Ligurie-Piémont et de Valais.


2021 ◽  
Author(s):  
James Panton ◽  
J. Davies ◽  
Tim Elliott ◽  
Morten Andersen ◽  
Donald Porcelli ◽  
...  

For mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs), measurements of Pb isotope ratios show broad linear correlations with a certain degree of scatter. In 207Pb/204Pb - 206Pb/204Pb space, the best fit line defines a pseudo-isochron age (τPb) of ~1.9 Gyr.Previous modelling suggests a relative change in the behaviours of U and Pb between 2.25-2.5 Ga, resulting in net recycling of HIMU (high U/Pb) material in the latter part of Earth's history, to explain the observed τPb. However, simulations in which fractionation is controlled by a single set of partition coefficients throughout the model runs fail to reproduce τPb and the observed scatter in Pb isotope ratios. We build on these models with 3D mantle convection simulations including parameterisations for melting, U recycling from the continents and preferential removal of Pb from subducted oceanic crust.We find that both U recycling after the great oxygenation event (GOE) and Pb extraction after the onset of plate tectonics, are required in order to fit the observed gradient and scatter of both the 207Pb/204Pb - 206Pb/204Pb and 208Pb/204Pb - 206Pb/204Pb arrays. Unlike much previous work, our model does not require accumulations of subducted oceanic crust to persist at the CMB for long periods of time in order to match geochemical observations.


Sign in / Sign up

Export Citation Format

Share Document