scholarly journals South China Sea documents the transition from wide continental rift to continental break up

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongdan Deng ◽  
Jianye Ren ◽  
Xiong Pang ◽  
Patrice F. Rey ◽  
Ken R. McClay ◽  
...  

Abstract During extension, the continental lithosphere thins and breaks up, forming either wide or narrow rifts depending on the thermo-mechanical state of the extending lithosphere. Wide continental rifts, which can reach 1,000 km across, have been extensively studied in the North American Cordillera and in the Aegean domain. Yet, the evolutionary process from wide continental rift to continental breakup remains enigmatic due to the lack of seismically resolvable data on the distal passive margin and an absence of onshore natural exposures. Here, we show that Eocene extension across the northern margin of the South China Sea records the transition between a wide continental rift and highly extended (<15 km) continental margin. On the basis of high-resolution seismic data, we document the presence of dome structures, a corrugated and grooved detachment fault, and subdetachment deformation involving crustal-scale nappe folds and magmatic intrusions, which are coeval with supradetachment basins. The thermal and mechanical weakening of this broad continental domain allowed for the formation of metamorphic core complexes, boudinage of the upper crust and exhumation of middle/lower crust through detachment faulting. The structural architecture of the northern South China Sea continental margin is strikingly similar to the broad continental rifts in the North American Cordillera and in the Aegean domain, and reflects the transition from wide rift to continental breakup.

2013 ◽  
Vol 32 (4) ◽  
pp. 41-48 ◽  
Author(s):  
Xiangtao ZHANG ◽  
Liang CHEN ◽  
Qinghua SHE ◽  
Sufang ZHANG ◽  
Peijun QIAO ◽  
...  

Author(s):  
Fang Zhao ◽  
Christian Berndt ◽  
Tiago M. Alves ◽  
Shaohong Xia ◽  
Lin Li ◽  
...  

The continental margin of the northern South China Sea is considered to be a magma-poor rifted margin. This work uses new seismic, bathymetric, gravity, and magnetic data to reveal how extensively magmatic processes have reshaped the latter continental margin. Widespread hydrothermal vent complexes and magmatic edifices such as volcanoes, igneous sills, lava flows, and associated domes are confirmed in the broader area of the northern South China Sea. Newly identified hydrothermal vents have crater- and mound-shaped surface expressions, and occur chiefly above igneous sills and volcanic edifices. Detailed stratigraphic analyses of volcanoes and hydrothermal vents suggest that magmatic activity took place in discrete phases between the early Miocene and the Quaternary. Importantly, the occurrence of hydrothermal vents close to the present seafloor, when accompanied by shallow igneous sills, suggest that fluid seepage is still active, well after main phases of volcanism previously documented in the literature. After combining geophysical and geochemical data, this study postulates that the extensive post-rift magmatism in the northern South China Sea is linked to the effect of a mantle plume over a long time interval. We propose that prolonged magmatism resulted in contact metamorphism in carbon-rich sediments, producing large amounts of hydrothermal fluid along the northern South China Sea. Similar processes are expected in parts of magma-poor margins in association with CO2/CH4 and heat flow release into sea water and underlying strata.


2016 ◽  
Vol 11 (2) ◽  
pp. 427-441 ◽  
Author(s):  
Penggao Fang ◽  
Weiwei Ding ◽  
Yinxia Fang ◽  
Zhongxian Zhao ◽  
Zhibing Feng

Sign in / Sign up

Export Citation Format

Share Document