scholarly journals Visible-light-driven amino acids production from biomass-based feedstocks over ultrathin CdS nanosheets

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Song ◽  
Jiafu Qu ◽  
Peijie Han ◽  
Max J. Hülsey ◽  
Guping Zhang ◽  
...  

Abstract Chemical synthesis of amino acids from renewable sources is an alternative route to the current processes based on fermentation. Here, we report visible-light-driven amination of biomass-derived α-hydroxyl acids and glucose into amino acids using NH3 at 50 °C. Ultrathin CdS nanosheets are identified as an efficient and stable catalyst, exhibiting an order of magnitude higher activity towards alanine production from lactic acid compared to commercial CdS as well as CdS nanoobjects bearing other morphologies. Its unique catalytic property is attributed mainly to the preferential formation of oxygen-centered radicals to promote α-hydroxyl acids conversion to α-keto acids, and partially to the poor H2 evolution which is an undesired side reaction. Encouragingly, a number of amino acids are prepared using the current protocol, and one-pot photocatalytic conversion of glucose to alanine is also achieved. This work offers an effective catalytic system for amino acid synthesis from biomass feedstocks under mild conditions.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1707
Author(s):  
Wayiza Masamba

α-Amino acids find widespread applications in various areas of life and physical sciences. Their syntheses are carried out by a multitude of protocols, of which Petasis and Strecker reactions have emerged as the most straightforward and most widely used. Both reactions are three-component reactions using the same starting materials, except the nucleophilic species. The differences and similarities between these two important reactions are highlighted in this review.


2019 ◽  
Vol 122 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Lisa Vettore ◽  
Rebecca L. Westbrook ◽  
Daniel A. Tennant

AbstractAn abundant supply of amino acids is important for cancers to sustain their proliferative drive. Alongside their direct role as substrates for protein synthesis, they can have roles in energy generation, driving the synthesis of nucleosides and maintenance of cellular redox homoeostasis. As cancer cells exist within a complex and often nutrient-poor microenvironment, they sometimes exist as part of a metabolic community, forming relationships that can be both symbiotic and parasitic. Indeed, this is particularly evident in cancers that are auxotrophic for particular amino acids. This review discusses the stromal/cancer cell relationship, by using examples to illustrate a number of different ways in which cancer cells can rely on and contribute to their microenvironment – both as a stable network and in response to therapy. In addition, it examines situations when amino acid synthesis is driven through metabolic coupling to other reactions, and synthesis is in excess of the cancer cell’s proliferative demand. Finally, it highlights the understudied area of non-proteinogenic amino acids in cancer metabolism and their potential role.


2007 ◽  
Vol 73 (16) ◽  
pp. 5370-5373 ◽  
Author(s):  
Shigenori Yamaguchi ◽  
Hidenobu Komeda ◽  
Yasuhisa Asano

ABSTRACT d- and l-amino acids were produced from l- and d-amino acid amides by d-aminopeptidase from Ochrobactrum anthropi C1-38 and l-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of α-amino-ε-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides.


2015 ◽  
Vol 17 (44) ◽  
pp. 29479-29482 ◽  
Author(s):  
Linli Tang ◽  
Yuhang Du ◽  
Chuncai Kong ◽  
Shaodong Sun ◽  
Zhimao Yang

Novel Cu2O cubes with exposed {110} facets have been prepared. When evaluated for the photocatalytic performances, the etched Cu2O manifest higher photocatalytic activity than that of the normal Cu2O cubes.


Sign in / Sign up

Export Citation Format

Share Document