scholarly journals Very-Low-Frequency transmitters bifurcate energetic electron belt in near-earth space

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Man Hua ◽  
Wen Li ◽  
Binbin Ni ◽  
Qianli Ma ◽  
Alex Green ◽  
...  

Abstract Very-Low-Frequency (VLF) transmitters operate worldwide mostly at frequencies of 10–30 kilohertz for submarine communications. While it has been of intense scientific interest and practical importance to understand whether VLF transmitters can affect the natural environment of charged energetic particles, for decades there remained little direct observational evidence that revealed the effects of these VLF transmitters in geospace. Here we report a radially bifurcated electron belt formation at energies of tens of kiloelectron volts (keV) at altitudes of ~0.8–1.5 Earth radii on timescales over 10 days. Using Fokker-Planck diffusion simulations, we provide quantitative evidence that VLF transmitter emissions that leak from the Earth-ionosphere waveguide are primarily responsible for bifurcating the energetic electron belt, which typically exhibits a single-peak radial structure in near-Earth space. Since energetic electrons pose a potential danger to satellite operations, our findings demonstrate the feasibility of mitigation of natural particle radiation environment.

2019 ◽  
Vol 873 (2) ◽  
pp. 112 ◽  
Author(s):  
M. Laurenza ◽  
T. Alberti ◽  
M. F. Marcucci ◽  
G. Consolini ◽  
C. Jacquey ◽  
...  

2021 ◽  
Vol 59 (6) ◽  
pp. 433-445
Author(s):  
I. N. Myagkova ◽  
A. V. Bogomolov ◽  
V. E. Eremeev ◽  
A. O. Shiryaev ◽  
E. A. Ginzburg

2019 ◽  
Vol 9 ◽  
pp. A29
Author(s):  
Vladimir Kalegaev ◽  
Mikhail Panasyuk ◽  
Irina Myagkova ◽  
Yulia Shugay ◽  
Natalia Vlasova ◽  
...  

Internet-based system of Space Monitoring Data Center (SMDC) of Skobeltsyn Institute of Nuclear Physics of Moscow State University (SINP MSU) has been developed to predict and analyze radiation conditions in near-Earth space. This system contains satellite measurement databases and operational models and devoted to collect, store and process space weather monitoring data in the near real-time. SMDC operational services acquire data from ACE, SDO, GOES, Electro-L, Meteor-M satellites and use them for forecasting, now-casting and post-casting of space weather factors. This paper is intended to give overview of operational services of SMDC Internet-based system and demonstrate their possibilities and limitations to analyze space weather phenomena and predict radiation and geomagnetic conditions in the near-Earth space during February 14–March 5, 2014. This prolonged period of high level solar and geomagnetic activity demonstrates various manifestations of the space weather: solar proton events, geomagnetic storms and outer radiation belt (RB) dynamics. Solar sources of interplanetary space disturbances and their influence on geomagnetic and radiation state of the Earth’s magnetosphere were described using output coming from SMDC’ Web-based applications. Validation of SMDC’s operational models was performed based on the quality of description of the physical conditions in near-Earth space during space weather events observed from February 14 to March 5, 2014. The advantages and disadvantages of SMDC operational services are illustrated and discussed based on comparison with data obtained from satellites.


2015 ◽  
Vol 1 (4) ◽  
pp. 72-81
Author(s):  
Анатолий Гульельми ◽  
Anatol Guglielmi ◽  
Александр Потапов ◽  
Alexander Potapov ◽  
Борис Довбня ◽  
...  

Response of magnetospheric oscillatory systems in the ultra-low-frequency (ULF) range on electromagnetic, mechanical, thermal, and chemical impulse action are overviewed and selectively analyzed. Impulses can occur both inside the magnetosphere (e.g. explosion in the geomagnetic tail, impulsive injection of energetic particles) and outside (e.g. solar flare, interplanetary shock wave, thunderstorm discharge, earthquake, volcanic eruption etc.). We suggest systematics of impulses which is based on geophysics and space physics data and is closely related to the theory of ULF oscillations. The systematics is of cognitive and practical importance, and it allows us to interpret a rich variety of responses of the magnetosphere to impulses of the terrestrial and space origins. The classification principle is selected according to which an impulse type is determined from two criteria such as impulse origin location and character of impulse action on one or another oscillatory system of the magnetosphere. The primary conditions for completeness and validity of division are fulfilled because all possible terms of putting impulses to classes, types and forms are specified, and the terms do not overlap. The classification and introduced nomenclature are helpful because they make possible to systematize common properties and specific features of types and forms of impulses. This is especially important with regard to reaction of the Earth’s plasma sheaths to impulses generated during an earthquake preparation as well as under experimental study of dynamic processes in the near-Earth space. The examples of response of ULF oscillations to impulsive actions are shown. The particular focus is given to review of studies which still are not mentioned in reviews and monographies.


2017 ◽  
Vol 13 (S335) ◽  
pp. 232-235
Author(s):  
Irina N. Myagkova ◽  
Vladimir V. Kalegaev ◽  
Mikhail I. Panasyuk ◽  
Yuliya S. Shugai ◽  
Sergey A. Dolenko ◽  
...  

AbstractRadiation environment of near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational monitor and forecast of radiation conditions both at Geostationary Orbits (GEO) and at Low Earths Orbits (LEO) of the near-Earth space using data of recent space missions (Vernov, CORONAS series) and current (Lomonosov, Meteor-M, Electro-L) ones. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU - [swx.sinp.msu.ru]) provides possibilities to monitor and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma-emission of solar flares.


2021 ◽  
Author(s):  
Man Hua ◽  
Binbin Ni ◽  
Wen Li ◽  
Qianli Ma ◽  
Xudong Gu ◽  
...  

<p>The Earth’s inner energetic electron belt typically exhibits one-peak radial structure with high flux intensities at radial distances < ~2.5 Earth radii. Recent studies suggested that human-made very-low-frequency (VLF) transmitters leaked into the inner magnetosphere can efficiently scatter energetic electrons, bifurcating the inner electron belt. In this study, we use 6-year electron flux data from Van Allen Probes to comprehensively analyze the statistical distributions of the bifurcated inner electron belt and their dependence on electron energy, season, and geomagnetic activity, which is crucial to understand when and where VLF transmitters can efficiently scatter electrons in addition to other naturally occurring waves. We reveal that bifurcation can be frequently observed for tens of keV electrons under relatively quiet geomagnetic conditions, typically after significant flux enhancements that elevate fluxes at L = 2.0 – ~2.5 providing the prerequisite for the bifurcation. The bifurcation typically lasts for a few days until interrupted by substorm injections or inward radial diffusion. The L-shells of bifurcation dip decrease with increasing electron energy, and the occurrence of bifurcation is higher during northern hemisphere winter than summer, supporting the important role of VLF transmitter waves in energetic electron loss in near-Earth space.</p>


2008 ◽  
Vol 55 (4) ◽  
pp. 1810-1832 ◽  
Author(s):  
SÉbastien Bourdarie ◽  
Michael Xapsos

2021 ◽  
Vol 217 (8) ◽  
Author(s):  
S. G. Claudepierre ◽  
J. B. Blake ◽  
A. J. Boyd ◽  
J. H. Clemmons ◽  
J. F. Fennell ◽  
...  

AbstractMeasurements from NASA’s Van Allen Probes have transformed our understanding of the dynamics of Earth’s geomagnetically-trapped, charged particle radiation. The Van Allen Probes were equipped with the Magnetic Electron Ion Spectrometers (MagEIS) that measured energetic and relativistic electrons, along with energetic ions, in the radiation belts. Accurate and routine measurement of these particles was of fundamental importance towards achieving the scientific goals of the mission. We provide a comprehensive review of the MagEIS suite’s on-orbit performance, operation, and data products, along with a summary of scientific results. The purpose of this review is to serve as a complement to the MagEIS instrument paper, which was largely completed before flight and thus focused on pre-flight design and performance characteristics. As is the case with all space-borne instrumentation, the anticipated sensor performance was found to be different once on orbit. Our intention is to provide sufficient detail on the MagEIS instruments so that future generations of researchers can understand the subtleties of the sensors, profit from these unique measurements, and continue to unlock the mysteries of the near-Earth space radiation environment.


Sign in / Sign up

Export Citation Format

Share Document