scholarly journals Visual mate preference evolution during butterfly speciation is linked to neural processing genes

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Matteo Rossi ◽  
Alexander E. Hausmann ◽  
Timothy J. Thurman ◽  
Stephen H. Montgomery ◽  
Riccardo Papa ◽  
...  

Abstract Many animal species remain separate not because their individuals fail to produce viable hybrids but because they “choose” not to mate. However, we still know very little of the genetic mechanisms underlying changes in these mate preference behaviours. Heliconius butterflies display bright warning patterns, which they also use to recognize conspecifics. Here, we couple QTL for divergence in visual preference behaviours with population genomic and gene expression analyses of neural tissue (central brain, optic lobes and ommatidia) across development in two sympatric Heliconius species. Within a region containing 200 genes, we identify five genes that are strongly associated with divergent visual preferences. Three of these have previously been implicated in key components of neural signalling (specifically an ionotropic glutamate receptor and two regucalcins), and overall our candidates suggest shifts in behaviour involve changes in visual integration or processing. This would allow preference evolution without altering perception of the wider environment.

Author(s):  
Matteo Rossi ◽  
Alexander E. Hausmann ◽  
Timothy J. Thurman ◽  
Stephen H. Montgomery ◽  
Riccardo Papa ◽  
...  

Many animal species remain separate not because they fail to produce viable hybrids, but because their individuals “choose” not to mate. However, we still know very little of the genetic mechanisms underlying changes in these mate preference behaviours. Heliconius butterflies display bright warning patterns, which they also use to recognize conspecifics. Here, we couple QTL for divergence in visual preference behaviours with population genomic and gene expression analyses of neural tissue (central brain, optic lobes and ommatidia) across development in two sympatric Heliconius species. Within a region containing 200 genes, we identify five genes that are strongly associated with divergent visual preferences. Three of these have previously been implicated in key components of neural signalling (specifically an ionotropic glutamate receptor and two regucalcins), and overall our candidates suggest shifts in behaviour involve changes in visual integration or processing. This would allow preference evolution without altering perception of the wider environment.


Ethology ◽  
2017 ◽  
Vol 123 (11) ◽  
pp. 793-799 ◽  
Author(s):  
Susan M. Bertram ◽  
Sarah J. Harrison ◽  
Genevieve L. Ferguson ◽  
Ian R. Thomson ◽  
Michelle J. Loranger ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jia-Yi Wei ◽  
Sao-Yu Chu ◽  
Yu-Chien Huang ◽  
Pei-Chi Chung ◽  
Hung-Hsiang Yu

AbstractNeurogenesis in the Drosophila central brain progresses dynamically in order to generate appropriate numbers of neurons during different stages of development. Thus, a central challenge in neurobiology is to reveal the molecular and genetic mechanisms of neurogenesis timing. Here, we found that neurogenesis is significantly impaired when a novel mutation, Nuwa, is induced at early but not late larval stages. Intriguingly, when the Nuwa mutation is induced in neuroblasts of olfactory projection neurons (PNs) at the embryonic stage, embryonic-born PNs are generated, but larval-born PNs of the same origin fail to be produced. Through molecular characterization and transgenic rescue experiments, we determined that Nuwa is a loss-of-function mutation in Drosophila septin interacting protein 1 (sip1). Furthermore, we found that SIP1 expression is enriched in neuroblasts, and RNAi knockdown of sip1 using a neuroblast driver results in formation of small and aberrant brains. Finally, full-length SIP1 protein and truncated SIP1 proteins lacking either the N- or C-terminus display different subcellular localization patterns, and only full-length SIP1 can rescue the Nuwa-associated neurogenesis defect. Taken together, these results suggest that SIP1 acts as a crucial factor for specific neurogenesis programs in the early developing larval brain.


2020 ◽  
Author(s):  
Olivia Carter ◽  
Bruno Swinderen ◽  
David Leopold ◽  
Shaun Collin ◽  
Alex Maier

Author(s):  
A. Trillo

There are conflicting reports regarding some fine structural details of arteries from several animal species. Buck denied the existence of a sub-endothelial space, while Karrer and Keech described a space of variable width which separates the endothelium from the underlying internal elastic lamina in aortas of aging rats and mice respectively.The present communication deals with the ultrastrueture of the interface between the endothelial cell layer and the internal elastic lamina as observed in carotid arteries from rabbits of varying ages.


Author(s):  
W. Kuenzig ◽  
M. Boublik ◽  
J.J. Kamm ◽  
J.J. Burns

Unlike a variety of other animal species, such as the rabbit, mouse or rat, the guinea pig has a relatively long gestation period and is a more fully developed animal at birth. Kuenzig et al. reported that drug metabolic activity which increases very slowly during fetal life, increases rapidly after birth. Hepatocytes of a 3-day old neonate metabolize drugs and reduce cytochrome P-450 at a rate comparable to that observed in the adult animal. Moreover the administration of drugs like phenobarbital to pregnant guinea pigs increases the microsomal mixed function oxidase activity already in the fetus.Drug metabolic activity is, generally, localized within the smooth endoplasmic reticulum (SER) of the hepatocyte.


Sign in / Sign up

Export Citation Format

Share Document