scholarly journals Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sandra Valle ◽  
Sonia Alcalá ◽  
Laura Martin-Hijano ◽  
Pablo Cabezas-Sáinz ◽  
Diego Navarro ◽  
...  

Abstract Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7–9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1790 ◽  
Author(s):  
Timothy P. Cash ◽  
Sonia Alcalá ◽  
María del Rosario Rico-Ferreira ◽  
Elena Hernández-Encinas ◽  
Jennifer García ◽  
...  

Despite significant efforts to improve pancreatic ductal adenocarcinoma (PDAC) clinical outcomes, overall survival remains dismal. The poor response to current therapies is partly due to the existence of pancreatic cancer stem cells (PaCSCs), which are efficient drivers of PDAC tumorigenesis, metastasis and relapse. To find new therapeutic agents that could efficiently kill PaCSCs, we screened a chemical library of 680 compounds for candidate small molecules with anti-CSC activity, and identified two compounds of a specific chemical series with potent activity in vitro and in vivo against patient-derived xenograft (PDX) cultures. The anti-CSC mechanism of action of this specific chemical series was found to rely on induction of lysosomal membrane permeabilization (LMP), which is likely associated with the increased lysosomal mass observed in PaCSCs. Using the well characterized LMP-inducer siramesine as a tool molecule, we show elimination of the PaCSC population in mice implanted with tumors from two PDX models. Collectively, our approach identified lysosomal disruption as a promising anti-CSC therapeutic strategy for PDAC.


2018 ◽  
Vol 47 (5) ◽  
pp. 2109-2125 ◽  
Author(s):  
Zhaocong Yang ◽  
Yanfeng Zhang ◽  
Tingting Tang ◽  
Qinhua Zhu ◽  
Wanyue Shi ◽  
...  

Background/Aims: Pancreatic cancer remains one of the deadliest human malignancies, the lethality of which may be attributed to the presence of pancreatic cancer stem cells (PCSCs), a small subpopulation of cells existing within pancreatic tumor with high carcinogenesis. Therefore, it is crucial to establish an efficient enrichment and culture system of PCSCs and identify the key genes involved in the regulation of PCSCs. The three-dimensional (3D) liquid suspension mammosphere culture system has been established for enrichment and culture of PCSCs in vitro as the cell spheres are likely to originate from individual cell clone, but it has been challenged because the cell spheroids could be a result of cell aggregation. Methods: We optimized the existing culture system by adding methylcellulose to create a 3D semi-solid system which prevented the non-specific aggregation. Then we identified the CSC properties of Panc-1 spheroid cells cultured by this system by detecting the genes associated with stemness and by evaluation of the tumorigenicity in vitro and in vivo through invasion, migration and xenograft experiments methods. Subsequently, we performed high-throughput sequencing (HTS) of the Panc-1 spheroid cells. Results: We confirmed the PCSCs properties and high malignancy of the Panc-1 spheroid cells enriched by our novel 3D semi-solid system both in vitro and in vivo. Hundreds of mRNA, microRNA (miRNA) and dozens of long non-coding RNA (LncRNA) were identified to be differentially regulated in PCSCs-like Panc-1 spheroid cells compared with their parental cells by HTS. Conclusions: Our results demonstrate an efficient enrichment and culture system for Panc-1 spheroid cells with the PCSCs properties. The differentially expressed genes and their targets identified by the HTS of the Panc-1 spheroid cells can serve as new potential biomarkers for pancreatic cancer diagnosis and targeted therapy.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Sabrina Bimonte ◽  
Antonio Barbieri ◽  
Maddalena Leongito ◽  
Giuseppe Palma ◽  
Vitale del Vecchio ◽  
...  

Pancreatic ductal adenocarcinoma is currently one of the deadliest cancers with low overall survival rate. This disease leads to an aggressive local invasion and early metastases and is poorly responsive to treatment with chemotherapy or chemoradiotherapy. Several studies have shown that pancreatic cancer stem cells (PCSCs) play different roles in the regulation of drug resistance and recurrence in pancreatic cancer. MicroRNA (miRNA), a class of newly emerging small noncoding RNAs, is involved in the modulation of several biological activities ranging from invasion to metastases development, as well as drug resistance of pancreatic cancer. In this review, we synthesize the latest findings on the role of miRNAs in regulating different biological properties of pancreatic cancer stem cells.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3120-3128 ◽  
Author(s):  
Kim Klarmann ◽  
Mariaestela Ortiz ◽  
Meghan Davies ◽  
Jonathan R. Keller

AbstractOur laboratory recently identified a quiescent class of pluripotent hematopoietic stem cells (PHSCs) that are lineage negative (Linneg), lack c-Kit, and are able to give rise to c-Kit–positive (c-Kitpos) PHSCs in vivo. This population fails to proliferate in vitro but has delayed reconstituting activity in vivo. In this study, we purified these cells to enrich for the PHSCs and we identified in vitro conditions capable of supporting their maturation. The c-Kit–negative (c-Kitneg) cells exhibited differential expression of Sca-1, CD34, CD43, CD45, and Thy 1.2. We purified the cells based on Sca-1, as it is expressed on active PHSCs. We detected pre–colony-forming unit spleen (pre–CFU-s) activity in both the Sca-1neg and Sca-1pos populations, indicating the presence of primitive PHSCs in both populations. However, our in vitro studies suggest that the Sca-1pos population is enriched for PHSCs. The in vitro systems that support the growth of these dormant cells include a modified long-term marrow culture and various stromal cell lines. In modified long-term bone marrow cultures, c-Kitneg cells gave rise to c-Kitpos PHSCs, with long-term reconstitution activity in vivo. Thus we have established an in vitro system to examine PHSC maturation that will allow us to study the mediators of the c-Kitneg to c-Kitpos transition.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e114581 ◽  
Author(s):  
Tao Yin ◽  
Pengfei Shi ◽  
Shanmiao Gou ◽  
Qiang Shen ◽  
Chunyou Wang

2013 ◽  
Vol 85 (15) ◽  
pp. 7271-7278 ◽  
Author(s):  
Philip C. Gach ◽  
Peter J. Attayek ◽  
Gabriela Herrera ◽  
Jen Jen Yeh ◽  
Nancy L. Allbritton

2000 ◽  
Vol 28 (6) ◽  
pp. 690-699 ◽  
Author(s):  
Kiyoshi Ando ◽  
Yoshihiko Nakamura ◽  
Jamel Chargui ◽  
Hideyuki Matsuzawa ◽  
Takashi Tsuji ◽  
...  

2017 ◽  
Author(s):  
Ethan V. Abel ◽  
Masashi Goto ◽  
Brian Magnuson ◽  
Saji Abraham ◽  
Nikita Ramanathan ◽  
...  

ABSTRACTThe biological properties of pancreatic cancer stem cells (PCSCs) remain incompletely defined and the central regulators are unknown. By bioinformatic analysis of a PCSC-enriched gene signature, we identified the transcription factor HNF1A as a putative central regulator of PCSC function. Levels of HNF1A and its target genes were found to be elevated in PCSCs and tumorspheres, and depletion of HNF1A resulted in growth inhibition, apoptosis, impaired tumorsphere formation, PCSC depletion, and downregulation of OCT4 expression. Conversely, HNF1A overexpression increased PCSC numbers and tumorsphere formation in pancreatic cancer cells and drove PDA cell growth. Importantly, depletion of HNF1A in primary tumor xenografts impaired tumor growth and depleted PCSCs in vivo. Finally, we established an HNF1A-dependent gene signature in PDA cells that significantly correlated with reduced survivability in patients. These findings identify HNF1A as a central transcriptional regulator of the PCSC state and novel oncogene in pancreatic ductal adenocarcinoma.


Sign in / Sign up

Export Citation Format

Share Document