scholarly journals Massively parallel cantilever-free atomic force microscopy

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenhan Cao ◽  
Nourin Alsharif ◽  
Zhongjie Huang ◽  
Alice E. White ◽  
YuHuang Wang ◽  
...  

AbstractResolution and field-of-view often represent a fundamental tradeoff in microscopy. Atomic force microscopy (AFM), in which a cantilevered probe deflects under the influence of local forces as it scans across a substrate, is a key example of this tradeoff with high resolution imaging being largely limited to small areas. Despite the tremendous impact of AFM in fields including materials science, biology, and surface science, the limitation in imaging area has remained a key barrier to studying samples with intricate hierarchical structure. Here, we show that massively parallel AFM with >1000 probes is possible through the combination of a cantilever-free probe architecture and a scalable optical method for detecting probe–sample contact. Specifically, optically reflective conical probes on a comparatively compliant film are found to comprise a distributed optical lever that translates probe motion into an optical signal that provides sub-10 nm vertical precision. The scalability of this approach makes it well suited for imaging applications that require high resolution over large areas.

Author(s):  
Toshio Ando

AbstractSince its invention in the late 1980s, atomic force microscopy (AFM), in which a nanometer-sized tip is used to physically interrogate the properties of a surface at high resolution, has brought about scientific revolutions in both surface science and biological physics. In response to a request from the journal, I have prepared a top-five list of scientific papers that I feel represent truly landmark developments in the use of AFM in the biophysics field. This selection is necessarily limited by number (just five) and subjective (my opinion) and I offer my apologies to those not appearing in this list.


2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


2013 ◽  
Vol 19 (5) ◽  
pp. 1358-1363 ◽  
Author(s):  
Massimo Santacroce ◽  
Federica Daniele ◽  
Andrea Cremona ◽  
Diletta Scaccabarozzi ◽  
Michela Castagna ◽  
...  

AbstractXenopus laevis oocytes are an interesting model for the study of many developmental mechanisms because of their dimensions and the ease with which they can be manipulated. In addition, they are widely employed systems for the expression and functional study of heterologous proteins, which can be expressed with high efficiency on their plasma membrane. Here we applied atomic force microscopy (AFM) to the study of the plasma membrane of X. laevis oocytes. In particular, we developed and optimized a new sample preparation protocol, based on the purification of plasma membranes by ultracentrifugation on a sucrose gradient, to perform a high-resolution AFM imaging of X. laevis oocyte plasma membrane in physiological-like conditions. Reproducible AFM topographs allowed visualization and dimensional characterization of membrane patches, whose height corresponds to a single lipid bilayer, as well as the presence of nanometer structures embedded in the plasma membrane and identified as native membrane proteins. The described method appears to be an applicable tool for performing high-resolution AFM imaging of X. laevis oocyte plasma membrane in a physiological-like environment, thus opening promising perspectives for studying in situ cloned membrane proteins of relevant biomedical/pharmacological interest expressed in this biological system.


2010 ◽  
Vol 3 (6) ◽  
pp. 065205 ◽  
Author(s):  
Ken-ichi Umeda ◽  
Noriaki Oyabu ◽  
Kei Kobayashi ◽  
Yoshiki Hirata ◽  
Kazumi Matsushige ◽  
...  

2009 ◽  
Vol 20 (26) ◽  
pp. 260201-260201 ◽  
Author(s):  
Rubén Pérez ◽  
Ricardo García ◽  
Udo Schwarz

ACS Nano ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. 126-133 ◽  
Author(s):  
Sandip Kumar ◽  
Michaël L. Cartron ◽  
Nic Mullin ◽  
Pu Qian ◽  
Graham J. Leggett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document