scholarly journals Publisher Correction: Autophagy facilitates adaptation of budding yeast to respiratory growth by recycling serine for one-carbon metabolism

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander I. May ◽  
Mark Prescott ◽  
Yoshinori Ohsumi

A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20648-5

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander I. May ◽  
Mark Prescott ◽  
Yoshinori Ohsumi

AbstractThe mechanism and function of autophagy as a highly-conserved bulk degradation pathway are well studied, but the physiological role of autophagy remains poorly understood. We show that autophagy is involved in the adaptation of Saccharomyces cerevisiae to respiratory growth through its recycling of serine. On respiratory media, growth onset, mitochondrial initiator tRNA modification and mitochondrial protein expression are delayed in autophagy defective cells, suggesting that mitochondrial one-carbon metabolism is perturbed in these cells. The supplementation of serine, which is a key one-carbon metabolite, is able to restore mitochondrial protein expression and alleviate delayed respiratory growth. These results indicate that autophagy-derived serine feeds into mitochondrial one-carbon metabolism, supporting the initiation of mitochondrial protein synthesis and allowing rapid adaptation to respiratory growth.


2010 ◽  
Vol 80 (45) ◽  
pp. 319-329 ◽  
Author(s):  
Allyson A. West ◽  
Marie A. Caudill

Folate and choline are water-soluble micronutrients that serve as methyl donors in the conversion of homocysteine to methionine. Inadequacy of these nutrients can disturb one-carbon metabolism as evidenced by alterations in circulating folate and/or plasma homocysteine. Among common genetic variants that reside in genes regulating folate absorptive and metabolic processes, homozygosity for the MTHFR 677C > T variant has consistently been shown to have robust effects on status markers. This paper will review the impact of genetic variants in folate-metabolizing genes on folate and choline bioefficacy. Nutrient-gene and gene-gene interactions will be considered along with the need to account for these genetic variants when updating dietary folate and choline recommendations.


Proceedings ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Nicola Gillies ◽  
Amber M. Milan ◽  
Pankaja Sharma ◽  
Brenan Durainayagam ◽  
Sarah M. Mitchell ◽  
...  

Background: Maintaining optimal status of folate and metabolically [...]


2021 ◽  
Vol 21 (4) ◽  
pp. 206-206
Author(s):  
Felix Clemens Richter ◽  
Alexander J. Clarke

Toxicology ◽  
2021 ◽  
pp. 152803
Author(s):  
Ahlam Abuawad ◽  
Anne K. Bozack ◽  
Roheeni Saxena ◽  
Mary V. Gamble

Sign in / Sign up

Export Citation Format

Share Document