scholarly journals Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
James A. Hutchinson ◽  
Katharina Kronenberg ◽  
Paloma Riquelme ◽  
Jürgen J. Wenzel ◽  
Gunther Glehr ◽  
...  

AbstractTreatment of advanced melanoma with combined PD-1/CTLA-4 blockade commonly causes serious immune-mediated complications. Here, we identify a subset of patients predisposed to immune checkpoint blockade-related hepatitis who are distinguished by chronic expansion of effector memory CD4+ T cells (TEM cells). Pre-therapy CD4+ TEM cell expansion occurs primarily during autumn or winter in patients with metastatic disease and high cytomegalovirus (CMV)-specific serum antibody titres. These clinical features implicate metastasis-dependent, compartmentalised CMV reactivation as the cause of CD4+ TEM expansion. Pre-therapy CD4+ TEM expansion predicts hepatitis in CMV-seropositive patients, opening possibilities for avoidance or prevention. 3 of 4 patients with pre-treatment CD4+ TEM expansion who received αPD-1 monotherapy instead of αPD-1/αCTLA-4 therapy remained hepatitis-free. 4 of 4 patients with baseline CD4+ TEM expansion given prophylactic valganciclovir and αPD-1/αCTLA-4 therapy remained hepatitis-free. Our findings exemplify how pathogen exposure can shape clinical reactions after cancer therapy and how this insight leads to therapeutic innovations.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3008-3008 ◽  
Author(s):  
Jennifer Ann Wargo ◽  
Vancheswaran Gopalakrishnan ◽  
Christine Spencer ◽  
Tatiana Karpinets ◽  
Alexandre Reuben ◽  
...  

3008 Background: Significant advances have been made in cancer therapy with immune checkpoint blockade. However, responses in pts with MM are variable, and insights are needed to identify biomarkers of response and strategies to overcome resistance. There is a growing appreciation of the role of the microbiome in cancer, and evidence in murine models that modulation of the gut microbiome may enhance responses to immune checkpoint blockade, though this has not been well studied in pts. Thus we evaluated the microbiome in a large cohort of pts with MM, focusing on responses to anti-PD-1. Methods: We collected oral (n = 234) and gut microbiome samples (n = 120) on a large cohort of of MM patients (n = 221). Of note, the majority of pts were treated with PD-1 based therapy (n = 105). Pts on anti-PD1 were classified as either responders (R) or non-responders (NR) based on RECIST criteria, and 16S rRNA and whole genome shotgun (WGS) sequencing were performed. Immune profiling (via immunohistochemistry, flow cytometry, cytokines and gene expression profiling) was also done in available pre-treatment tumors at baseline. Results: Significant differences in diversity and composition of the gut microbiome were noted in R vs NR to anti-PD-1, with a higher diversity of bacteria in R vs NR (p = 0.03). Differences were also noted in the composition of gut bacteria, with a higher abundance of Clostridiales in R and of Bacteroidales in NR. Immune profiling demonstrated increased tumor immune infiltrates in R pts , with a higher density of CD8+T cells; this correlated with abundance of specific bacteria enriched in the gut microbiome (r = 0.59, 0.014). Other features of enhanced immunity were also noted, and WGS revealed differential metabolic signatures in R vs NR. Furthermore, diversity (p = 0.009; HR = 7.67) and abundance of specific bacteria in R (p = 0.007; HR = 3.88) was associated with improved PFS to anti-PD-1 therapy. Conclusions: Diversity and composition of the gut microbiome differ in R vs NR pts with MM receiving anti-PD-1 therapy. These have potentially far-reaching implications, though results need to be validated in larger cohorts across cancer types.


2018 ◽  
Vol 80 (1) ◽  
pp. 51-55
Author(s):  
Ai KAJITA ◽  
Osamu YAMASAKI ◽  
Tatsuya KAJI ◽  
Hiroshi UMEMURA ◽  
Keiji IWATSUKI

2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


Sign in / Sign up

Export Citation Format

Share Document