scholarly journals Structure of the complete, membrane-assembled COPII coat reveals a complex interaction network

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joshua Hutchings ◽  
Viktoriya G. Stancheva ◽  
Nick R. Brown ◽  
Alan C. M. Cheung ◽  
Elizabeth A. Miller ◽  
...  

AbstractCOPII mediates Endoplasmic Reticulum to Golgi trafficking of thousands of cargoes. Five essential proteins assemble into a two-layer architecture, with the inner layer thought to regulate coat assembly and cargo recruitment, and the outer coat forming cages assumed to scaffold membrane curvature. Here we visualise the complete, membrane-assembled COPII coat by cryo-electron tomography and subtomogram averaging, revealing the full network of interactions within and between coat layers. We demonstrate the physiological importance of these interactions using genetic and biochemical approaches. Mutagenesis reveals that the inner coat alone can provide membrane remodelling function, with organisational input from the outer coat. These functional roles for the inner and outer coats significantly move away from the current paradigm, which posits membrane curvature derives primarily from the outer coat. We suggest these interactions collectively contribute to coat organisation and membrane curvature, providing a structural framework to understand regulatory mechanisms of COPII trafficking and secretion.

Author(s):  
Joshua Hutchings ◽  
Viktoriya G. Stancheva ◽  
Nick R. Brown ◽  
Alan C.M. Cheung ◽  
Elizabeth A. Miller ◽  
...  

AbstractThe COPII coat mediates Endoplasmic Reticulum (ER) to Golgi trafficking for thousands of proteins. Five essential coat proteins assemble at the ER into a characteristic two-layer architecture, which recruits cargo proteins whilst sculpting membrane carriers with diverse morphologies. How coat architecture drives membrane curvature whilst ensuring morphological plasticity is largely unknown, yet is central to understanding mechanisms of carrier formation. Here, we use an established reconstitution system to visualise the complete, membrane-assembled COPII coat with unprecedented detail by cryo-electron tomography and subtomogram averaging. We discover a network of interactions within and between coat layers, including multiple interfaces that were previously unknown. We reveal the physiological importance of these interactions using genetic and biochemical approaches. A newly resolved Sec31 C-terminal domain provides order to the coat and is essential to drive membrane curvature in cells. Moreover, a novel outer coat assembly mode provides a basis for coat adaptability to varying membrane curvatures. Furthermore, a newly resolved region of Sec23, which we term the L-loop, imparts coat stability and in part dictates membrane shape. Our results suggest these interactions collectively contribute to coat organisation and membrane curvature, providing a structural framework to understand regulatory mechanisms of COPII trafficking and secretion.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Steffen Klein ◽  
Mirko Cortese ◽  
Sophie L. Winter ◽  
Moritz Wachsmuth-Melm ◽  
Christopher J. Neufeldt ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID19 pandemic, is a highly pathogenic β-coronavirus. As other coronaviruses, SARS-CoV-2 is enveloped, replicates in the cytoplasm and assembles at intracellular membranes. Here, we structurally characterize the viral replication compartment and report critical insights into the budding mechanism of the virus, and the structure of extracellular virions close to their native state by in situ cryo-electron tomography and subtomogram averaging. We directly visualize RNA filaments inside the double membrane vesicles, compartments associated with viral replication. The RNA filaments show a diameter consistent with double-stranded RNA and frequent branching likely representing RNA secondary structures. We report that assembled S trimers in lumenal cisternae do not alone induce membrane bending but laterally reorganize on the envelope during virion assembly. The viral ribonucleoprotein complexes (vRNPs) are accumulated at the curved membrane characteristic for budding sites suggesting that vRNP recruitment is enhanced by membrane curvature. Subtomogram averaging shows that vRNPs are distinct cylindrical assemblies. We propose that the genome is packaged around multiple separate vRNP complexes, thereby allowing incorporation of the unusually large coronavirus genome into the virion while maintaining high steric flexibility between the vRNPs.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Giulia Zanetti ◽  
Simone Prinz ◽  
Sebastian Daum ◽  
Annette Meister ◽  
Randy Schekman ◽  
...  

Coat protein complex II (COPII) mediates formation of the membrane vesicles that export newly synthesised proteins from the endoplasmic reticulum. The inner COPII proteins bind to cargo and membrane, linking them to the outer COPII components that form a cage around the vesicle. Regulated flexibility in coat architecture is essential for transport of a variety of differently sized cargoes, but structural data on the assembled coat has not been available. We have used cryo-electron tomography and subtomogram averaging to determine the structure of the complete, membrane-assembled COPII coat. We describe a novel arrangement of the outer coat and find that the inner coat can assemble into regular lattices. The data reveal how coat subunits interact with one another and with the membrane, suggesting how coordinated assembly of inner and outer coats can mediate and regulate packaging of vesicles ranging from small spheres to large tubular carriers.


Author(s):  
Steffen Klein ◽  
Mirko Cortese ◽  
Sophie L. Winter ◽  
Moritz Wachsmuth-Melm ◽  
Christopher J. Neufeldt ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID19 pandemic, is a highly pathogenic β-coronavirus. As other coronaviruses, SARS-CoV-2 is enveloped, replicates in the cytoplasm and assembles at intracellular membranes. Here, we structurally characterize the viral replication compartment and report critical insights into the budding mechanism of the virus, and the structure of extracellular virions close to their native state by in situ cryo-electron tomography and subtomogram averaging. We directly visualized RNA filaments inside the double membrane vesicles, compartments associated with viral replication. The RNA filaments show a diameter consistent with double-stranded RNA and frequent branching likely representing RNA secondary structures. We found that assembled S trimers in lumenal cisternae do not alone induce membrane bending but laterally reorganize on the envelope during virion assembly. The viral ribonucleoprotein complexes (vRNPs) are accumulated at the curved membrane characteristic for budding sites suggesting that vRNP recruitment is enhanced by membrane curvature. Subtomogram averaging shows that vRNPs are distinct cylindrical assemblies. We propose that the genome is packaged around multiple separate vRNP complexes, thereby allowing incorporation of the unusually large coronavirus genome into the virion while maintaining high steric flexibility between the vRNPs.


2020 ◽  
Author(s):  
Danielle Grotjahn ◽  
Saikat Chowdhury ◽  
Gabriel C. Lander

AbstractCryo-electron tomography is a powerful biophysical technique enabling three-dimensional visualization of complex biological systems. Macromolecular targets of interest identified within cryo-tomograms can be computationally extracted, aligned, and averaged to produce a better-resolved structure through a process called subtomogram averaging (STA). However, accurate alignment of macromolecular machines that exhibit extreme structural heterogeneity and conformational flexibility remains a significant challenge with conventional STA approaches. To expand the applicability of STA to a broader range of pleomorphic complexes, we developed a user-guided, focused refinement approach that can be incorporated into the standard STA workflow to facilitate the robust alignment of particularly challenging samples. We demonstrate that it is possible to align visually recognizable portions of multi-subunit complexes by providing a priori information regarding their relative orientations within cryo-tomograms, and describe how this strategy was applied to successfully elucidate the first three-dimensional structure of the dynein-dynactin motor protein complex bound to microtubules. Our approach expands the application of STA for solving a more diverse range of heterogeneous biological structures, and establishes a conceptual framework for the development of automated strategies to deconvolve the complexity of crowded cellular environments and improve in situ structure determination technologies.


2020 ◽  
Author(s):  
Christian E Zimmerli ◽  
Matteo Allegretti ◽  
Vasileios Rantos ◽  
Sara K Goetz ◽  
Agnieszka Obarska-Kosinska ◽  
...  

Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes and mediate nucleocytoplasmic exchange. They are made of 30 different nucleoporins that form an intricate cylindrical architecture around an aqueous central channel. This architecture is highly dynamic in space and time. Variations in NPC diameter were reported, but the physiological circumstances and the molecular details remain unknown. Here we combined cryo-electron tomography and subtomogram averaging with integrative structural modeling to capture a molecular movie of the respective large-scale conformational changes in cellulo. While actively transporting NPCs adopt a dilated conformation, they strongly constrict upon cellular energy depletion. Fluorescence recovery after photo bleaching experiments show that NPC constriction is concomitant with reduced diffusion and active transport across the nuclear envelope. Our data point to a model where the energy status of cells is linked to the conformation of NPC architecture.


2020 ◽  
Vol 26 (S2) ◽  
pp. 3142-3145
Author(s):  
Paula Navarro ◽  
Stefano Scaramuzza ◽  
Henning Stahlberg ◽  
Daniel Castaño-Díez

2019 ◽  
Author(s):  
Renmin Han ◽  
Lun Li ◽  
Peng Yang ◽  
Fa Zhang ◽  
Xin Gao

Abstract Motivation Electron tomography (ET) offers a unique capacity to image biological structures in situ. However, the resolution of ET reconstructed tomograms is not comparable to that of the single-particle cryo-EM. If many copies of the object of interest are present in the tomograms, their structures can be reconstructed in the tomogram, picked, aligned and averaged to increase the signal-to-noise ratio and improve the resolution, which is known as the subtomogram averaging. To date, the resolution improvement of the subtomogram averaging is still limited because each reconstructed subtomogram is of low reconstruction quality due to the missing wedge issue. Results In this article, we propose a novel computational model, the constrained reconstruction model (CRM), to better recover the information from the multiple subtomograms and compensate for the missing wedge issue in each of them. CRM is supposed to produce a refined reconstruction in the final turn of subtomogram averaging after alignment, instead of directly taking the average. We first formulate the averaging method and our CRM as linear systems, and prove that the solution space of CRM is no larger, and in practice much smaller, than that of the averaging method. We then propose a sparse Kaczmarz algorithm to solve the formulated CRM, and further extend the solution to the simultaneous algebraic reconstruction technique (SART). Experimental results demonstrate that CRM can significantly alleviate the missing wedge issue and improve the final reconstruction quality. In addition, our model is robust to the number of images in each tilt series, the tilt range and the noise level. Availability and implementation The codes of CRM-SIRT and CRM-SART are available at https://github.com/icthrm/CRM. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 49 (D1) ◽  
pp. D86-D91
Author(s):  
Bailing Zhou ◽  
Baohua Ji ◽  
Kui Liu ◽  
Guodong Hu ◽  
Fei Wang ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) play important functional roles in many diverse biological processes. However, not all expressed lncRNAs are functional. Thus, it is necessary to manually collect all experimentally validated functional lncRNAs (EVlncRNA) with their sequences, structures, and functions annotated in a central database. The first release of such a database (EVLncRNAs) was made using the literature prior to 1 May 2016. Since then (till 15 May 2020), 19 245 articles related to lncRNAs have been published. In EVLncRNAs 2.0, these articles were manually examined for a major expansion of the data collected. Specifically, the number of annotated EVlncRNAs, associated diseases, lncRNA-disease associations, and interaction records were increased by 260%, 320%, 484% and 537%, respectively. Moreover, the database has added several new categories: 8 lncRNA structures, 33 exosomal lncRNAs, 188 circular RNAs, and 1079 drug-resistant, chemoresistant, and stress-resistant lncRNAs. All records have checked against known retraction and fake articles. This release also comes with a highly interactive visual interaction network that facilitates users to track the underlying relations among lncRNAs, miRNAs, proteins, genes and other functional elements. Furthermore, it provides links to four new bioinformatics tools with improved data browsing and searching functionality. EVLncRNAs 2.0 is freely available at https://www.sdklab-biophysics-dzu.net/EVLncRNAs2/.


Sign in / Sign up

Export Citation Format

Share Document