scholarly journals Long-range optofluidic control with plasmon heating

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
B. Ciraulo ◽  
J. Garcia-Guirado ◽  
I. de Miguel ◽  
J. Ortega Arroyo ◽  
R. Quidant

AbstractUsing light to manipulate fluids has been a long-sought-after goal for lab-on-a-chip applications to address the size mismatch between bulky external fluid controllers and microfluidic devices. Yet, this goal has remained elusive due to the complexity of thermally driven fluid dynamic phenomena, and the lack of approaches that allow comprehensive multiscale and multiparameter studies. Here, we report an innovative optofluidic platform that fulfills this need by combining digital holographic microscopy with state-of-the-art thermoplasmonics, allowing us to identify the different contributions from thermophoresis, thermo-osmosis, convection, and radiation pressure. In our experiments, we demonstrate that a local thermal perturbation at the microscale can lead to mm-scale changes in both the particle and fluid dynamics, thus achieving long-range transport. Furthermore, thanks to a comprehensive parameter study involving sample geometry, temperature increase, light fluence, and size of the heat source, we showcase an integrated and reconfigurable all-optical control strategy for microfluidic devices, thereby opening new frontiers in fluid actuation technology.

2019 ◽  
Vol 75 (9) ◽  
pp. 685-692
Author(s):  
Hye Jun Ma ◽  
Seung Seok Lee ◽  
Sohee Park ◽  
Eun Seo Choi

Tellus B ◽  
2011 ◽  
Vol 63 (3) ◽  
Author(s):  
Borgar Aamaas ◽  
Carl Egede Bøggild ◽  
Frode Stordal ◽  
Terje Berntsen ◽  
Kim Holmén ◽  
...  

2021 ◽  
Vol 84 ◽  
pp. 200-207
Author(s):  
Jiansen Pan ◽  
Qingmei Peng ◽  
Guoliang Zhang ◽  
Qingyi Xie ◽  
Xiangjun Gong ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 276
Author(s):  
Yun Liu ◽  
Peihua Bu ◽  
Mingxing Jiao ◽  
Junhong Xing ◽  
Ke Kou ◽  
...  

The coherent noise always exists in digital holographic microscopy due to the laser source, degrading the image quality. A method of speckle suppression using the dynamic speckle illumination, produced by double-moving diffusers, is presented in digital holographic microscopy. The space–time correlation functions are theoretically analyzed from the statistics distribution in the doubly and singly scattered system, respectively. The configuration of double-moving diffusers is demonstrated to have better performance in speckle suppression compared with the single diffuser and moving-static double diffusers cases. The experiment results verify the feasibility of the approach. The presented approach only requires a single shot interferogram to realize the speckle reduction, accordingly it has the potential application in real-time measurement.


Sign in / Sign up

Export Citation Format

Share Document