scholarly journals STING enhances cell death through regulation of reactive oxygen species and DNA damage

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas J. Hayman ◽  
Marta Baro ◽  
Tyler MacNeil ◽  
Chatchai Phoomak ◽  
Thazin Nwe Aung ◽  
...  

AbstractResistance to DNA-damaging agents is a significant cause of treatment failure and poor outcomes in oncology. To identify unrecognized regulators of cell survival we performed a whole-genome CRISPR-Cas9 screen using treatment with ionizing radiation as a selective pressure, and identified STING (stimulator of interferon genes) as an intrinsic regulator of tumor cell survival. We show that STING regulates a transcriptional program that controls the generation of reactive oxygen species (ROS), and that STING loss alters ROS homeostasis to reduce DNA damage and to cause therapeutic resistance. In agreement with these data, analysis of tumors from head and neck squamous cell carcinoma patient specimens show that low STING expression is associated with worse outcomes. We also demonstrate that pharmacologic activation of STING enhances the effects of ionizing radiation in vivo, providing a rationale for therapeutic combinations of STING agonists and DNA-damaging agents. These results highlight a role for STING that is beyond its canonical function in cyclic dinucleotide and DNA damage sensing, and identify STING as a regulator of cellular ROS homeostasis and tumor cell susceptibility to reactive oxygen dependent, DNA damaging agents.

2017 ◽  
Author(s):  
Shubhra Rastogi ◽  
Amini Hwang ◽  
Josolyn Chan ◽  
Jean YJ Wang

SUMMARYIonizing radiation stimulates nuclear accumulation of Abl tyrosine kinase that is required for directly irradiated cells to produce microRNA-34c-containing extracellular vesicles, which transfer the microRNA into non-irradiated cells to induce reactive oxygen species and bystander DNA damage.ABSTRACTIonizing radiation (IR) activates an array of DNA damage response (DDR) that includes the induction of bystander effects (BE) in cells not targeted by radiation. How DDR pathways in irradiated cells stimulate BE in non-targeted cells is mostly unknown. We show here that extracellular vesicles from irradiated cells (EV-IR) induce reactive oxygen species (ROS) and DNA damage when internalized by un-irradiated cells. We found that EV-IR from Abl-NLS-mutated cells could not induce ROS or DNA damage, and restoration of nuclear Abl rescued those defects. Expanding a previous finding that Abl stimulates miR-34c expression, we show here that nuclear Abl also drives the vesicular secretion of miR-34c. Ectopic miR-34c expression, without irradiation, generated EV-miR-34c capable of inducing ROS and DNA damage. Furthermore, EV-IR from miR34-knockout cells could not induce ROS and raised γH2AX to lesser extent than EV-IR from miR34-wild type cells. These results establish a novel role for the Abl-miR-34c DDR pathway in stimulating radiation-induced bystander effects.


2021 ◽  
Author(s):  
Barry Halliwell ◽  
Amitava Adhikary ◽  
Michael Dingfelder ◽  
Miral Dizdaroglu

Schematic representation of the important chemical reactions involved in reactive oxygen species-mediated DNA damage.


Blood ◽  
2018 ◽  
Vol 131 (12) ◽  
pp. 1311-1324 ◽  
Author(s):  
Kathrin Arndt ◽  
Andrea Kranz ◽  
Juliane Fohgrub ◽  
Adrien Jolly ◽  
Anita S. Bledau ◽  
...  

Key Points SETD1A regulates DNA damage signaling and repair in HSCs and hematopoietic precursors in the absence of reactive oxygen species accumulation. SETD1A is important for the survival of mice after inflammation-induced HSC activation in situ.


2011 ◽  
Vol 50 (9) ◽  
pp. 1081-1093 ◽  
Author(s):  
Ute Wölfle ◽  
Philipp R. Esser ◽  
Birgit Simon-Haarhaus ◽  
Stefan F. Martin ◽  
Jürgen Lademann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document