scholarly journals Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Liu ◽  
Wenzhe Liu ◽  
Bo Guan ◽  
Bo Wang ◽  
Lei Shi ◽  
...  

AbstractIn a narrow temperature window in going from the isotropic to highly chiral orders, cholesteric liquid crystals exhibit so-called blue phases, consisting of different morphologies of long, space-filling double twisted cylinders. Those of cubic spatial symmetry have attracted considerable attention in recent years as templates for soft photonic materials. The latter often requires the creation of monodomains of predefined orientation and size, but their engineering is complicated by a lack of comprehensive understanding of how blue phases nucleate and transform into each other at a submicrometer length scale. In this work, we accomplish this by intercepting nucleation processes at intermediate stages with fast cross-linking of a stabilizing polymer matrix. We reveal using transmission electron microscopy, synchrotron small-angle X-ray diffraction, and angle-resolved microspectroscopy that the grid of double-twisted cylinders undergoes highly coordinated, diffusionless transformations. In light of our findings, the implementation of several applications is discussed, such as temperature-switchable QR codes, micro-area lasing, and fabrication of blue phase liquid crystals with large domain sizes.

2018 ◽  
Vol 10 (4) ◽  
pp. 100 ◽  
Author(s):  
Marzena Maria Sala-Tefelska ◽  
Kamil Orzechowski ◽  
Filip A. Sala ◽  
Tomasz R. Woliński ◽  
Olga Strzeżysz ◽  
...  

In this paper, the influence of homeotropic and homogeneous orienting layers is presented in a cell filled with chiral nematic liquid crystals stabilized in a blue phase. The change of selective Bragg reflection from red to blue light was observed for homogeneous layers in rectangular geometries. The growth of blue phase crystals domains in a glass cell as well an influence of temperature and the electric field on such a structure, are also presented. Full Text: PDF ReferencesF. Reinitzer, Beitrage zur Kenntniss des Cholestherins, Monatsh Chem. 9, 421-441, (1888). CrossRef J. Yan, M. Jiao, L. Rao, and S.-T. Wu, "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18, 11450-11455 (2010) CrossRef Y. Chen, D. Xu, S.-T. Wu, S.-i. Yamamoto, Y. Haseba, "A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal", Appl. Phys. Lett. 102, 141116 (2013) CrossRef Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, "Optimized blue-phase liquid crystal for field-sequential-color displays", Opt. Mater. Express 7, 641-650 (2017) CrossRef V. Sridurai, M. Mathews, C. V. Yelamaggad, G. G. Nair, "Electrically Tunable Soft Photonic Gel Formed by Blue Phase Liquid Crystal for Switchable Color-Reflecting Mirror", ACS Appl. Mater. Interfaces, 9 (45), 39569-39575 (2017) CrossRef E. Oton, E. Netter, T. Nakano, Y. D.-Katayama, F. Inoue, "Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation", Sci. Rep. vol.7, 44575 (2017) CrossRef Q. Liu, D. Luo, X. Zhang, S. Li, Z. Tian, "Refractive index and absorption coefficient of blue phase liquid crystal in terahertz band", Liq. Cryst., Vol. 44, No. 2, pp. 348-354 (2017) CrossRef Y. Li, Y. Liu, Q. Li, S.-T. Wu, "Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film", Appl. Opt., Vol. 51, No. 14, pp. 2568-2572 (2012) CrossRef M. M. Sala-Tefelska, K. Orzechowski M. Sierakowski, A. Siarkowska, T.R. Woliński, O. Strzeżysz, P. Kula, "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215, (2018) CrossRef H. Claus, O. Willekens, O. Chojnowska, R. Dąbrowski, J. Beeckman, K. Neyts, "Inducing monodomain blue phase liquid crystals by long-lasting voltage application during temperature variation", Liq. Cryst. 43 (5), 688-693, (2016) CrossRef M. Takahashi, T. Ohkawa, H. Yoshida, J. Fukuda, H. Kikuchi, M. Ozaki, "Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces", J. Phys. D: Appl. Phys. 51 (10), 104003 (2018) CrossRef P. Joshi, X. Shang, J. De Smet, E. Islamai, D. Cuypers, G. Van Steenberge, S. Van Vlierberghe, P. Dubruel, H. De Smet, "On the effect of alignment layers on blue phase liquid crystals", Appl. Phys. Lett. 106, 101105 (2015) CrossRef K. Orzechowski, M.W. Sierakowski, M. Sala-Tefelska, P. Joshi, T.R. Woliński, H.D. Smet, "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017) CrossRef P.-J. Chen, M. Chen, S.-Y. Ni, H.-S. Chen, Y.-H. Lin, "Influence of alignment layers on crystal growth of polymer-stabilized blue phase liquid crystals", pt. Mater. Express 6, 1003-1010 (2016) CrossRef CrossRef


2017 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Pankaj Joshi ◽  
Oliver Willekens ◽  
Xiaobing Shang ◽  
Jelle De Smet ◽  
Dieter Cuypers ◽  
...  

A polarization independent and fast electrically switchable beam steering device is presented, based on a surface relief grating combined with polymer stabilized blue phase liquid crystals. Switching on and off times are both less than 2 milliseconds. The prospects of further improvements are discussed. Full Text: PDF ReferencesD.C. Wright, et al., "Crystalline liquids: the blue phases", Rev. Mod. Phys. 61, 385 (1989). CrossRef H. Kikuchi, et al., "Polymer-stabilized liquid crystal blue phases", Nat. Mater. 1, 64 (2002). CrossRef Samsung, Korea, SID exhibition, (2008).J. Yan, et al., "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18, 11450 (2010). CrossRef L. Rao, et al., "A large Kerr constant polymer-stabilized blue phase liquid crystal", Appl. Phys. Lett. 98, 081109 (2011). CrossRef Y. Hisakado, et al., "Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases", Adv. Mater. 17, 96 (2005). CrossRef K. M. et al., "Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal", J. Disp. Technol. 6, 49 (2010). CrossRef Y. Chen, et al., "Level set based topology optimization for optical cloaks", Appl. Phys. Lett. 102, 251106 (2013). CrossRef H. Choi, et al., "Fast electro-optic switching in liquid crystal blue phase II", Appl. Phys. Lett. 98, 131905 (2011). CrossRef Y.H. Chen, et al., "Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time", Opt. Express 19, 25441 (2011). CrossRef Y. Li, et al., "Polarization independent adaptive microlens with a blue-phase liquid crystal", Opt. Express 19, 8045 (2011). CrossRef C.T. Lee, et al., "Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal", Opt. Express 19, 17402 (2011). CrossRef Y.T. Lin, et al., "Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation", J. Appl. Phys. 113, (2013). CrossRef J.D. Lin, et al., "Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell", Optics Express 22, 29479 (2014). CrossRef W. Cao, et al., "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II", Nat. Mat. 1, 111 (2002). CrossRef S.T. Hur, et al., "Liquid-Crystalline Blue Phase Laser with Widely Tunable Wavelength", Adv. Mater. 25, 3002 (2013). CrossRef A. Mazzulla, et al., "Thermal and electrical laser tuning in liquid crystal blue phase I", Soft. Mater. 8, 4882 (2012). CrossRef C.W. Chen, et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978 (2012). CrossRef O. Willekens, et al., "Ferroelectric thin films with liquid crystal for gradient index applications", Opt. Exp. 24, 8088 (2016). CrossRef O. Willekens, et al., "Reflective liquid crystal hybrid beam-steerer", Opt. Exp. 24, 1541 (2016). CrossRef M. Jazbinšek, et al., "Characterization of holographic polymer dispersed liquid crystal transmission gratings", J. Appl. Phys. 90, 3831 (2001). CrossRef C.C. Bowley, et al., "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals", Appl. Phys. Lett. 79, 9 (2001). CrossRef Y.Q. Lu, et al., "Polarization switch using thick holographic polymer-dispersed liquid crystal grating", Appl. Phys. 95, 810 (2004). CrossRef J.J. Butler et al., "Diffraction properties of highly birefringent liquid-crystal composite gratings", Opt. Lett. 25, 420 (2000). CrossRef R.L. Sutherland et al., "Electrically switchable volume gratings in polymer-dispersed liquid crystals", Appl. Phys. Lett. 64, 1074 (1994). CrossRef X. Shang, et al., "Electrically Controllable Liquid Crystal Component for Efficient Light Steering", IEEE Photo. J. 7, 1 (2015). CrossRef J. Yan, et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef H.S. Chen, et al., "Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles", Opt. Mat. Exp. 2, 1149 (2012). CrossRef J. Yan. et al., "Dual-period tunable phase grating using polymer stabilized blue phase liquid crystal", Opt. Lett. 40, 4520 (2015). CrossRef H.S. Chen, et al., "Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles", Opt. Mat. Exp. 2, 1149 (2012). CrossRef H.C. Cheng, et al., "Blue-Phase Liquid Crystal Displays With Vertical Field Switching", J. Disp. Technol. 8, 98 (2012). CrossRef


2015 ◽  
Vol 112 (43) ◽  
pp. 13195-13200 ◽  
Author(s):  
José A. Martínez-González ◽  
Ye Zhou ◽  
Mohammad Rahimi ◽  
Emre Bukusoglu ◽  
Nicholas L. Abbott ◽  
...  

Blue phases of liquid crystals represent unique ordered states of matter in which arrays of defects are organized into striking patterns. Most studies of blue phases to date have focused on bulk properties. In this work, we present a systematic study of blue phases confined into spherical droplets. It is found that, in addition to the so-called blue phases I and II, several new morphologies arise under confinement, with a complexity that increases with the chirality of the medium and with a nature that can be altered by surface anchoring. Through a combination of simulations and experiments, it is also found that one can control the wavelength at which blue-phase droplets absorb light by manipulating either their size or the strength of the anchoring, thereby providing a liquid–state analog of nanoparticles, where dimensions are used to control absorbance or emission. The results presented in this work also suggest that there are conditions where confinement increases the range of stability of blue phases, thereby providing intriguing prospects for applications.


2017 ◽  
Vol 9 (2) ◽  
pp. 54 ◽  
Author(s):  
Kamil Orzechowski ◽  
Marek Wojciech Sierakowski ◽  
Marzena Sala-Tefelska ◽  
Tomasz Ryszard Woliński ◽  
Olga Strzeżysz ◽  
...  

In this work an alternative method for refractive index measurement of blue phase liquid crystal in the Kerr effect has been described. The proposed wedge method uses simple goniometric setup, allowing for direct index measurements for any wavelengths and index values. This is significant advantage comparing to other methods, usually having limitations of the measurement range as well as necessity complicated calculation to obtain refractive indices values. The results are reliable and agree well with the subject literature. Full Text: PDF ReferencesW. Cao et al., "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II", Nat. Mater. 1, 111-113 (2002). CrossRef S. Meiboom, M. Sammon, W.F. Brinkman, "Lattice of disclinations: The structure of the blue phases of cholesteric liquid crystals", Phys. Rev. A. 27, 438 (1983). CrossRef S. Tanaka et al., "Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy", Sci. Rep. 5, 16180 (2015). CrossRef Y. Li and S.-T. Wu, "Polarization independent adaptive microlens with a blue-phase liquid crystal", Opt. Express 19(9), 8045-8050 (2011). CrossRef N. Rong et al., "Polymer-Stabilized Blue-Phase Liquid Crystal Fresnel Lens Cured With Patterned Light Using a Spatial Light Modulator", J. of Disp. Technol. 12(10), 1008-1012 (2016). CrossRef J.-D. Lin et al., "Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell", Opt. Express 22(24), 29479-29492 (2014). CrossRef P. Joshi et al., "Tunable light beam steering device using polymer stabilized blue phase liquid crystals", Photon. Lett. Poland 9(1), 11-13 (2017). CrossRef Ch.-W. Chen et al., "Temperature dependence of refractive index in blue phase liquid crystals", Opt. Mater. Express 3(5), 527-532 (2013). CrossRef Y.-H. Lin et al., "Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements", J. Appl. Phys. 109, 104503 (2011). CrossRef J. Yan et al., "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18(11), 11450-11455 (2010). CrossRef K.A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Photon. Lett. Poland 8(2), 51-53 (2016). CrossRef O. Chojnowska et al., "Electro-optical properties of photochemically stable polymer-stabilized blue-phase material", J. Appl. Phys. 116, 213505 (2014). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef M. Chen et al., "Electrically assisting crystal growth of blue phase liquid crystals", Opt. Mater. Express 4(5), 953-959 (2014). CrossRef J. Kerr, Philos. Mag. 50, 337 (1875).


2021 ◽  
pp. 1-11
Author(s):  
Ying Shi ◽  
WanLi He ◽  
YaQian Zhang ◽  
YongFeng Cui ◽  
Lei Zhang ◽  
...  

2021 ◽  
Author(s):  
Iam-Choon Khoo ◽  
Chun-Wei Chen ◽  
Tsung-Hsien Lin

2015 ◽  
Vol 245 ◽  
pp. 200-203 ◽  
Author(s):  
Maxim Alexandrovich Pugachevskii ◽  
Viktor Igorevich Panfilov

The conditions of formation of the ZrO2 and HfO2 high-temperature (tetragonal and cubic) phases in the ablated nanoparticles were investigated. X-ray diffraction and transmission electron microscopy data demonstrate that laser intensities above 109 W/m2 ensure the formation of the ZrO2 high-temperature phases, while intensities above 5·109 W/m2 do the formation of the HfO2 high-temperature phases. Quantitative content of the high-temperature phases in layers of the ablated nanoparticles increases with raising the intensity. The obtained nanoparticles exhibit good thermal stability.


2018 ◽  
Vol 51 (18) ◽  
pp. 185103 ◽  
Author(s):  
Ramesh Manda ◽  
Srinivas Pagidi ◽  
Surjya Sarathi Bhattacharya ◽  
Hyesun Yoo ◽  
Arun Kumar T ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document