scholarly journals Ventral tegmental area GABA neurons mediate stress-induced blunted reward-seeking in mice

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel C. Lowes ◽  
Linda A. Chamberlin ◽  
Lisa N. Kretsge ◽  
Emma S. Holt ◽  
Atheir I. Abbas ◽  
...  

AbstractDecreased pleasure-seeking (anhedonia) forms a core symptom of depression. Stressful experiences precipitate depression and disrupt reward-seeking, but it remains unclear how stress causes anhedonia. We recorded simultaneous neural activity across limbic brain areas as mice underwent stress and discovered a stress-induced 4 Hz oscillation in the nucleus accumbens (NAc) that predicts the degree of subsequent blunted reward-seeking. Surprisingly, while previous studies on blunted reward-seeking focused on dopamine (DA) transmission from the ventral tegmental area (VTA) to the NAc, we found that VTA GABA, but not DA, neurons mediate stress-induced blunted reward-seeking. Inhibiting VTA GABA neurons disrupts stress-induced NAc oscillations and rescues reward-seeking. By contrast, mimicking this signature of stress by stimulating NAc-projecting VTA GABA neurons at 4 Hz reproduces both oscillations and blunted reward-seeking. Finally, we find that stress disrupts VTA GABA, but not DA, neural encoding of reward anticipation. Thus, stress elicits VTA-NAc GABAergic activity that induces VTA GABA mediated blunted reward-seeking.

2020 ◽  
Author(s):  
Daniel C. Lowes ◽  
Linda A. Chamberlin ◽  
Lisa N. Kretsge ◽  
Emma S. Holt ◽  
Atheir I. Abbas ◽  
...  

AbstractStressful experiences frequently precede depressive episodes1. Depression results in anhedonia, or disrupted reward-seeking, in most patients2. In humans3,4 and rodents5,6, stress can disrupt reward-seeking, providing a potential mechanism by which stress can precipitate depression7-9. Yet despite decades investigating how stress modulates dopamine neuron transmission between the ventral tegmental area (VTA) and nucleus accumbens (NAc), the underpinnings of the stress-anhedonia transition remain elusive10-13. Here we show that during restraint stress, VTA GABA neurons drive low frequency NAc LFP oscillations, rhythmically modulating NAc firing rates. The strength of these stress-induced NAc oscillations predict the degree of impaired reward-seeking upon release from restraint. Inhibiting VTA GABA neurons disrupts stress-induced NAc oscillations and reverses the effect of stress on reward-seeking. By contrast, mimicking these oscillations with rhythmic VTA GABA stimulation in the absence of stress blunts subsequent reward-seeking. These experiments demonstrate that VTA GABA inputs to the NAc are both necessary and sufficient for stress-induced decreases in reward seeking behavior, elucidating a key circuit-level mechanism underlying stress-induced anhedonia.


2006 ◽  
Vol 96 (2) ◽  
pp. 544-554 ◽  
Author(s):  
Susumu Koyama ◽  
Sarah B. Appel

A-type K+ current ( IA) is a rapidly inactivating voltage-dependent potassium current which can regulate the frequency of action potential (AP) generation. Increased firing frequency of ventral tegmental area (VTA) neurons is associated with the reinforcing effects of some drugs of abuse like nicotine and ethanol. In the present study, we classified dopamine (DA) and GABA VTA neurons, and investigated IA properties and the physiological role of IA in these neurons using conventional whole cell current- and voltage-clamp recording. DA VTA neurons had a mean firing frequency of 3.5 Hz with a long AP duration. GABA VTA neurons had a mean firing frequency of 16.7 Hz with a short AP duration. For IA properties, the voltage-dependence of steady-state IA activation and inactivation was similar in DA and GABA VTA neurons. IA inactivation was significantly faster and became faster at positive voltages in GABA neurons than DA neurons. Recovery from inactivation was significantly faster in DA neurons than GABA neurons. IA current density at full recovery was significantly larger in DA neurons than GABA neurons. In DA and GABA VTA neurons, latency to the first AP after the recovery from membrane hyperpolarization (repolarization latency) was measured. Longer repolarization latency was accompanied by larger IA current density in DA VTA neurons, compared with GABA VTA neurons. We suggest that IA contributes more to the regulation of AP generation in DA VTA neurons than in GABA VTA neurons.


2001 ◽  
Vol 906 (1-2) ◽  
pp. 190-197 ◽  
Author(s):  
Scott C Steffensen ◽  
Rong-Sheng Lee ◽  
Sarah H Stobbs ◽  
Steven J Henriksen

2018 ◽  
Author(s):  
Eleanor J Paul ◽  
Eliza Kalk ◽  
Kyoko Tossell ◽  
Elaine E. Irvine ◽  
Dominic J. Withers ◽  
...  

AbstractGABA neurons in the ventral tegmental area (VTA) and substantia nigra pars compact (SNc) play key roles in reward and aversion through their local inhibitory control of dopamine neuron activity and through long-range projections to several target regions including the nucleus accumbens. It is not clear if some of these GABA neurons are dedicated local interneurons or if they all collateralize and send projections externally as well as making local synaptic connections. Testing between these possibilities has been challenging in the absence of interneuron-specific molecular markers. We hypothesised that one potential candidate might be neuronal nitric oxide synthase (nNOS), a common interneuronal marker in other brain regions. To test this, we used a combination of immunolabelling (including antibodies for nNOS that we validated in tissue from nNOS-deficient mice) and cell-type-specific virus-based anterograde tracing in mice. We show that nNOS-expressing neurons in the parabrachial pigmented (PBP) part of the VTA and the SNc are GABAergic local interneurons, whereas nNOS-expressing neurons in the Rostral Linear Nucleus (RLi) are mostly glutamatergic and project to a number of regions, including the lateral hypothalamus, the ventral pallidum, and the median raphe nucleus. Taken together, these findings indicate that nNOS is expressed by neurochemically- and anatomically-distinct neuronal sub-groups in a sub-region-specific manner in the VTA and SNc.


2020 ◽  
Author(s):  
Jorge Miranda-Barrientos ◽  
Ian Chambers ◽  
Smriti Mongia ◽  
Bing Liu ◽  
Hui-Ling Wang ◽  
...  

AbstractThe ventral tegmental area (VTA) contains dopamine neurons intermixed with GABA-releasing (expressing vesicular GABA transporter, VGaT), glutamate-releasing (expressing vesicular glutamate transporter, VGluT2), and co-releasing (co-expressing VGaT and VGluT2) neurons. By delivering INTRSECT viral vectors into VTA of double vglut2-Cre/vgat-Flp transgenic mice, we targeted specific VTA cell populations for ex vivo recordings. We found that VGluT2+ VGaT− and VGluT2+ VGaT+ neurons on average had relatively hyperpolarized resting membrane voltage, greater rheobase, and lower spontaneous firing frequency compared to VGluT2− VGaT+ neurons, suggesting that VTA glutamate-releasing and glutamate-GABA co-releasing neurons require stronger excitatory drive to fire than GABA-releasing neurons. In addition, we detected expression of Oprm1mRNA (encoding μ opioid receptors, MOR) in VGluT2+ VGaT− and VGluT2− VGaT+ neurons, and their hyperpolarization by the MOR agonist DAMGO. Collectively, we demonstrate the utility of the double transgenic mouse to access VTA glutamate, glutamate-GABA and GABA neurons, and show some electrophysiological heterogeneity among them.Impact StatementSome physiological properties of VTA glutamate-releasing and glutamate-GABA co-releasing neurons are distinct from those of VTA GABA-releasing neurons. μ-opioid receptor activation hyperpolarizes some VTA glutamate-releasing and some GABA-releasing neurons.


Sign in / Sign up

Export Citation Format

Share Document