scholarly journals Anomalous formation of trihydrogen cations from water on nanoparticles

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Said Alghabra ◽  
Rami Ali ◽  
Vyacheslav Kim ◽  
Mazhar Iqbal ◽  
Philipp Rosenberger ◽  
...  

AbstractRegarded as the most important ion in interstellar chemistry, the trihydrogen cation, $${{\rm{H}}}_{{{3}}}^{+}$$ H 3 + , plays a vital role in the formation of water and many complex organic molecules believed to be responsible for life in our universe. Apart from traditional plasma discharges, recent laboratory studies have focused on forming the trihydrogen cation from large organic molecules during their interactions with intense radiation and charged particles. In contrast, we present results on forming $${{\rm{H}}}_{{{3}}}^{+}$$ H 3 + from bimolecular reactions that involve only an inorganic molecule, namely water, without the presence of any organic molecules to facilitate its formation. This generation of $${{\rm{H}}}_{{{3}}}^{+}$$ H 3 + is enabled by “engineering” a suitable reaction environment comprising water-covered silica nanoparticles exposed to intense, femtosecond laser pulses. Similar, naturally-occurring, environments might exist in astrophysical settings where hydrated nanometer-sized dust particles are impacted by cosmic rays of charged particles or solar wind ions. Our results are a clear manifestation of how aerosolized nanoparticles in intense femtosecond laser fields can serve as a catalysts that enable exotic molecular entities to be produced via non-traditional routes.

Author(s):  
NOBUAKI NAKASHIMA ◽  
TOMOYUKI YATSUHASHI ◽  
MASANAO MURAKAMI ◽  
RYUJI MIZOGUCHI ◽  
YOSHINORI SHIMADA

2008 ◽  
Vol 130 (46) ◽  
pp. 15264-15265 ◽  
Author(s):  
Tomoyuki Yatsuhashi ◽  
Soh Ichikawa ◽  
Yukari Shigematsu ◽  
Nobuaki Nakashima

2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Author(s):  
K. H. Leong ◽  
T. Y. Plew ◽  
R. L. Maynard ◽  
A. A. Said ◽  
L. A. Walker

Author(s):  
V. Pouget ◽  
E. Faraud ◽  
K. Shao ◽  
S. Jonathas ◽  
D. Horain ◽  
...  

Abstract This paper presents the use of pulsed laser stimulation with picosecond and femtosecond laser pulses. We first discuss the resolution improvement that can be expected when using ultrashort laser pulses. Two case studies are then presented to illustrate the possibilities of the pulsed laser photoelectric stimulation in picosecond single-photon and femtosecond two-photon modes.


2016 ◽  
Vol 80 (1) ◽  
pp. 85-88 ◽  
Author(s):  
V. P. Dresvyanskiy ◽  
M. A. Moiseeva ◽  
A. V. Kuznetsov ◽  
D. S. Glazunov ◽  
B. Chadraa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document