scholarly journals Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jian Xu ◽  
Jiajie Fan ◽  
Yujiao Lou ◽  
Weihua Xu ◽  
Zhiguo Wang ◽  
...  

AbstractDespite the well-established chemical processes for C-D bond formation, the toolbox of enzymatic methodologies for deuterium incorporation has remained underdeveloped. Here we describe a photodecarboxylase from Chlorella variabilis NC64A (CvFAP)-catalyzed approach for the decarboxylative deuteration of various carboxylic acids by employing D2O as a cheap and readily available deuterium source. Divergent protein engineering of WT-CvFAP is implemented using Focused Rational Iterative Site-specific Mutagenesis (FRISM) as a strategy for expanding the substrate scope. Using specific mutants, several series of substrates including different chain length acids, racemic substrates as well as bulky cyclic acids are successfully converted into the deuterated products (>40 examples). In many cases WT-CvFAP fails completely. This approach also enables the enantiocomplementary kinetic resolution of racemic acids to afford chiral deuterated products, which can hardly be accomplished by existing methods. MD simulations explain the results of improved catalytic activity and stereoselectivity of WT CvFAP and mutants.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Wang ◽  
Ran Lu ◽  
Chuangchuang He ◽  
Lei Liu

AbstractCatalytic kinetic resolution of amines represents a longstanding challenge in chemical synthesis. Here, we described a kinetic resolution of secondary amines through oxygenation to produce enantiopure hydroxylamines involving N–O bond formation. The economic and practical titanium-catalyzed asymmetric oxygenation with environmentally benign hydrogen peroxide as oxidant is applicable to a range of racemic indolines with multiple stereocenters and diverse substituent patterns in high efficiency with efficient chemoselectivity and enantio-discrimination. Late-stage asymmetric oxygenation of bioactive molecules that are otherwise difficult to synthesize was also explored.


2015 ◽  
Vol 39 (7) ◽  
pp. 5350-5353 ◽  
Author(s):  
Subhash Banerjee

A simple and efficient protocol for selective bis-Michael addition and mono-allylation of active methylene compounds has been demonstrated using ultra-small size (∼5 nm) uncapped cerium oxide nanoparticles (free-CeO2 NPs) as a reusable catalyst in water at room temperature.


2016 ◽  
Vol 40 (12) ◽  
pp. 10474-10481 ◽  
Author(s):  
Abdol R. Hajipour ◽  
Zahra Khorsandi

Herein, new methods and a comparison of the results for dehalogenative intramolecular C–X bond formation using two inexpensive and efficient catalysts are reported.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1279
Author(s):  
Dmitry Tolmachev ◽  
Natalia Lukasheva ◽  
George Mamistvalov ◽  
Mikko Karttunen

Investigation of the effect of CaCl2 salt on conformations of two anionic poly(amino acids) with different side chain lengths, poly-(α-l glutamic acid) (PGA) and poly-(α-l aspartic acid) (PASA), was performed by atomistic molecular dynamics (MD) simulations. The simulations were performed using both unbiased MD and the Hamiltonian replica exchange (HRE) method. The results show that at low CaCl2 concentration adsorption of Ca2+ ions lead to a significant chain size reduction for both PGA and PASA. With the increase in concentration, the chains sizes partially recover due to electrostatic repulsion between the adsorbed Ca2+ ions. Here, the side chain length becomes important. Due to the longer side chain and its ability to distance the charged groups with adsorbed ions from both each other and the backbone, PGA remains longer in the collapsed state as the CaCl2 concentration is increased. The analysis of the distribution of the mineral ions suggests that both poly(amino acids) should induce the formation of mineral with the same structure of the crystal cell.


Sign in / Sign up

Export Citation Format

Share Document