scholarly journals Engineering phase and polarization singularity sheets

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Soon Wei Daniel Lim ◽  
Joon-Suh Park ◽  
Maryna L. Meretska ◽  
Ahmed H. Dorrah ◽  
Federico Capasso

AbstractOptical phase singularities are zeros of a scalar light field. The most systematically studied class of singular fields is vortices: beams with helical wavefronts and a linear (1D) singularity along the optical axis. Beyond these common and stable 1D topologies, we show that a broader family of zero-dimensional (point) and two-dimensional (sheet) singularities can be engineered. We realize sheet singularities by maximizing the field phase gradient at the desired positions. These sheets, owning to their precise alignment requirements, would otherwise only be observed in rare scenarios with high symmetry. Furthermore, by applying an analogous procedure to the full vectorial electric field, we can engineer paraxial transverse polarization singularity sheets. As validation, we experimentally realize phase and polarization singularity sheets with heart-shaped cross-sections using metasurfaces. Singularity engineering of the dark enables new degrees of freedom for light-matter interaction and can inspire similar field topologies beyond optics, from electron beams to acoustics.

Nanophotonics ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 215-234 ◽  
Author(s):  
Shiyi Xiao ◽  
Jiarong Wang ◽  
Fu Liu ◽  
Shuang Zhang ◽  
Xiaobo Yin ◽  
...  

AbstractOptical spin-Hall effect (OSHE) is a spin-dependent transportation phenomenon of light as an analogy to its counterpart in condensed matter physics. Although being predicted and observed for decades, this effect has recently attracted enormous interests due to the development of metamaterials and metasurfaces, which can provide us tailor-made control of the light-matter interaction and spin-orbit interaction. In parallel to the developments of OSHE, metasurface gives us opportunities to manipulate OSHE in achieving a stronger response, a higher efficiency, a higher resolution, or more degrees of freedom in controlling the wave front. Here, we give an overview of the OSHE based on metasurface-enabled geometric phases in different kinds of configurational spaces and their applications on spin-dependent beam steering, focusing, holograms, structured light generation, and detection. These developments mark the beginning of a new era of spin-enabled optics for future optical components.


1999 ◽  
Vol 08 (01) ◽  
pp. 21-40 ◽  
Author(s):  
M. KIRA ◽  
F. JAHNKE ◽  
S. W. KOCH

Photoluminescence of semiconductor quantum wells is studied using a fully quantized theory for the light-matter interaction. Quantum fluctuations of the light field lead to direct coupling between a coherent excitation and luminescence in other directions. Numerical results for the time evolution of the luminescence spectrum and emission intensity dynamics after a femtosecond pulse excitation are presented.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 639-642
Author(s):  
Nader Engheta

AbstractIn this brief opinionated article, I present a personal perspective on metamterials with high degrees of freedom and dimensionality and discuss their potential roles in enriching light–matter interaction in photonics and related fields.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1259 ◽  
Author(s):  
Daniel Braak

The quantum Rabi model is the simplest and most important theoretical description of light–matter interaction for all experimentally accessible coupling regimes. It can be solved exactly and is even integrable due to a discrete symmetry, the Z 2 or parity symmetry. All qualitative properties of its spectrum, especially the differences to the Jaynes–Cummings model, which possesses a larger, continuous symmetry, can be understood in terms of the so-called “G-functions” whose zeroes yield the exact eigenvalues of the Rabi Hamiltonian. The special type of integrability appearing in systems with discrete degrees of freedom is responsible for the absence of Poissonian level statistics in the spectrum while its well-known “Juddian” solutions are a natural consequence of the structure of the G-functions. The poles of these functions are known in closed form, which allows drawing conclusions about the global spectrum.


Nanophotonics ◽  
2014 ◽  
Vol 3 (3) ◽  
pp. 181-201 ◽  
Author(s):  
Cheng-Wei Qiu ◽  
Darwin Palima ◽  
Andrey Novitsky ◽  
Dongliang Gao ◽  
Weiqiang Ding ◽  
...  

AbstractIn this review, we explore recent trends in optical micromanipulation by engineering light-matter interaction and controlling the mechanical effects of optical fields. One central theme is exploring the rich phenomena beyond the now established precision measurements based on trapping micro beads with tightly focused beams. Novel synthesized beams, exploiting the linear and angular momentum of light, open new possibilities in optical trapping and micromanipulation. Similarly, novel structures are promising to enable new optical micromanipulation modalities. Moreover, an overview of the amazing features of the optics of tractor beams and backward-directed energy fluxes will be presented. Recently the so-called effect of negative propagation of the beams (existence of the backward energy fluxes) has been confirmed for X-waves and Airy beams. In the review, we will also discuss the negative pulling force of structured beams and negative energy fluxes in the vicinity of fibers. The effect is achieved due to the interaction of multipoles or, in another interpretation, the momentum conservation. Both backward-directed Poynting vector and backward optical forces are counter-intuitive and give an insight into new physics and technologies. Exploiting the degrees of freedom in synthesizing novel beams and designed microstructures offer attractive prospects for emerging optical manipulation applications.


2019 ◽  
Vol 43 (3) ◽  
pp. 337-346 ◽  
Author(s):  
V.V. Kotlyar ◽  
S.S. Stafeev ◽  
A.A. Kovalev

Using the Richards-Wolf formalism, we obtain general expressions for all components of the electric and magnetic strength vectors near the sharp focus of an optical vortex with the topological charge m and nth-order azimuthal polarization. From these equations, simple consequences are derived for different values of m and n. If m=n>1, there is a non-zero intensity on the optical axis, like the one observed when focusing a vortex-free circularly polarized light field. If n=m+2, there is a reverse flux of light energy near the optical axis in the focal plane. The derived expressions can be used both for simulating the sharp focusing of optical fields with the double singularity (phase and polarization) and for a theoretical analysis of focal distributions of the intensity and the Poynting vector, allowing one to reveal the presence of rotational symmetry or the on-axis reverse energy flux, as well as the focal spot shape (a circle or a doughnut).


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this chapter we study with the tools developed in Chapter 3 the basic models that are the foundations of light–matter interaction. We start with Rabi dynamics, then consider the optical Bloch equations that add phenomenologically the lifetime of the populations. As decay and pumping are often important, we cover the Lindblad form, a correct, simple and powerful way to describe various dissipation mechanisms. Then we go to a full quantum picture, quantizing also the optical field. We first investigate the simpler coupling of bosons and then culminate with the Jaynes–Cummings model and its solution to the quantum interaction of a two-level system with a cavity mode. Finally, we investigate a broader family of models where the material excitation operators differ from the ideal limits of a Bose and a Fermi field.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 408
Author(s):  
Matteo Villani ◽  
Guillermo Albareda ◽  
Carlos Destefani ◽  
Xavier Cartoixà ◽  
Xavier Oriols

Without access to the full quantum state, modeling quantum transport in mesoscopic systems requires dealing with a limited number of degrees of freedom. In this work, we analyze the possibility of modeling the perturbation induced by non-simulated degrees of freedom on the simulated ones as a transition between single-particle pure states. First, we show that Bohmian conditional wave functions (BCWFs) allow for a rigorous discussion of the dynamics of electrons inside open quantum systems in terms of single-particle time-dependent pure states, either under Markovian or non-Markovian conditions. Second, we discuss the practical application of the method for modeling light–matter interaction phenomena in a resonant tunneling device, where a single photon interacts with a single electron. Third, we emphasize the importance of interpreting such a scattering mechanism as a transition between initial and final single-particle BCWF with well-defined central energies (rather than with well-defined central momenta).


Author(s):  
Yasuhisa Abe ◽  
David Boilley ◽  
Quentin Hourdillé ◽  
Caiwan Shen

Abstract A new framework is proposed for the study of collisions between very heavy ions which lead to the synthesis of Super-Heavy Elements (SHE), to address the fusion hindrance phenomenon. The dynamics of the reaction is studied in terms of collective degrees of freedom undergoing relaxation processes with different time scales. The Nakajima-Zwanzig projection operator method is employed to eliminate fast variable and derive a dynamical equation for the reduced system with only slow variables. There, the time evolution operator is renormalised and an inhomogeneous term appears, which represents a propagation of the given initial distribution. The term results in a slip to the initial values of the slow variables. We expect that gives a dynamical origin of the so-called “injection point s” introduced by Swiatecki et al in order to reproduce absolute values of measured cross sections for SHE. A formula for the slip is given in terms of physical parameters of the system, which confirms the results recently obtained with a Langevin equation, and permits us to compare various incident channels.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 975-982
Author(s):  
Huanhuan Su ◽  
Shan Wu ◽  
Yuhan Yang ◽  
Qing Leng ◽  
Lei Huang ◽  
...  

AbstractPlasmonic nanostructures have garnered tremendous interest in enhanced light–matter interaction because of their unique capability of extreme field confinement in nanoscale, especially beneficial for boosting the photoluminescence (PL) signals of weak light–matter interaction materials such as transition metal dichalcogenides atomic crystals. Here we report the surface plasmon polariton (SPP)-assisted PL enhancement of MoS2 monolayer via a suspended periodic metallic (SPM) structure. Without involving metallic nanoparticle–based plasmonic geometries, the SPM structure can enable more than two orders of magnitude PL enhancement. Systematic analysis unravels the underlying physics of the pronounced enhancement to two primary plasmonic effects: concentrated local field of SPP enabled excitation rate increment (45.2) as well as the quantum yield amplification (5.4 times) by the SPM nanostructure, overwhelming most of the nanoparticle-based geometries reported thus far. Our results provide a powerful way to boost two-dimensional exciton emission by plasmonic effects which may shed light on the on-chip photonic integration of 2D materials.


Sign in / Sign up

Export Citation Format

Share Document