scholarly journals Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kefeng Xiao ◽  
Taimin Yang ◽  
Jiaxing Liang ◽  
Aditya Rawal ◽  
Huabo Liu ◽  
...  

AbstractPorous electrodes with extraordinary capacitances in liquid electrolytes are oftentimes incompetent when gel electrolyte is applied because of the escalating ion diffusion limitations brought by the difficulties of infilling the pores of electrode with gels. As a result, porous electrodes usually exhibit lower capacitance in gel electrolytes than that in liquid electrolytes. Benefiting from the swift ion transport in intrinsic hydrated nanochannels, the electrochemical capacitance of the nanofluidic voidless electrode (5.56% porosity) is nearly equal in gel and liquid electrolytes with a difference of ~1.8%. In gel electrolyte, the areal capacitance reaches 8.94 F cm−2 with a gravimetric capacitance of 178.8 F g−1 and a volumetric capacitance of 321.8 F cm−3. The findings are valuable to solid-state electrochemical energy storage technologies that require high-efficiency charge transport.

MRS Advances ◽  
2018 ◽  
Vol 3 (22) ◽  
pp. 1261-1267 ◽  
Author(s):  
Belqasem Aljafari ◽  
Arash Takshi

ABSTRACTRecently, gel polymer electrolytes (GPEs) have been drawn noteworthy attention for different applications, specifically, for supercapacitors. GPEs could become an excellent substitute to liquid electrolytes (LEs) for making flexible and more durable devices. The performance of two different electrolytes (GPEs and LEs) in multi-wall carbon nanotube based supercapacitors were investigated. In spite of significantly lower conductivity of GPEs than LEs, devices with the gel electrolyte presented a superior performance. More focused has been given in this work on demonstrating the performance of supercapacitors based on GPEs and LEs at different concentrations of the acids ranging from 1M to 3M. Both electrolytes have been characterized at room temperature by making supercapacitors and using cyclic voltammetry, charging-discharging, electrochemical impedance spectroscopy, and leakage tests. The experimental results showed that GPE devices had much better capacitances and resistances compare to the LE based devices. Moreover, the capacitances of all devices were increased proportionally with the increase in the concentration from 1M to 3M, and the resistances were increased inversely with the decreased of concentration. The promising results from the gel electrolytes is encouraging for further development of flexible and high capacitance energy storage devices.


2016 ◽  
Vol 4 (18) ◽  
pp. 6972-6979 ◽  
Author(s):  
Beatriz Lopez-Bermudez ◽  
Wolfgang G. Zeier ◽  
Shiliang Zhou ◽  
Anna J. Lehner ◽  
Jerry Hu ◽  
...  

The development of new frameworks for solid electrolytes exhibiting fast Li-ion diffusion is critical for enabling new energy storage technologies.


2016 ◽  
Vol 34 (2) ◽  
pp. 233-241 ◽  
Author(s):  
Aqeel Ahmad Taimoor

AbstractCadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony) to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS) technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Meng-Cheng Tsui ◽  
Yung-Liang Tung ◽  
Song-Yeu Tsai ◽  
Chung-Wen Lan

The gel electrolytes for dye-sensitized solar cells (DSSCs) have been reported recently. Such electrolytes have their own liquid electrolyte properties and a quasi-solid electrolyte morphology. In this paper, nano-clay was chosen as gelator and mixed with liquid electrolytes to form clay type nanocomposite gel. This gel electrolyte consists of liquid electrolytes and surface modified nano-clay. The surface modifier makes nano-clay disperse well in liquid electrolytes. Nano-clay mixed with electrolyte will increase its viscosity and it is believed to be helpful in fabricating flexible DSSC. In general, an increase in viscosity will decrease ionic mobility and decrease photovoltaic conversion efficiency. The ionic conductivity was determined by the viscosity of the nano-clay gel with different surface modifiers. The ionic transfer rate of the nano-clay gel electrolyte is controlled by the diffusion and exchange reaction. The clay type gel electrolyte has higher ionic conductivity. Finally, the electrochemistry properties and the DSSC performances for the nano-clay type gel electrolyte have been discussed in this paper.


2018 ◽  
Vol 6 (38) ◽  
pp. 18701-18711 ◽  
Author(s):  
Wantana Sangchoom ◽  
Darren A. Walsh ◽  
Robert Mokaya

Valorisation of waste lignin generates porous carbons with attractive properties as high-energy/high-power electrode materials for electric double layer capacitors (EDLCs), achieving an energy density of 25 W h kg−1at a power density of 500 W kg−1in ionic liquid electrolytes.


2015 ◽  
Vol 17 (15) ◽  
pp. 10040-10052 ◽  
Author(s):  
P. Naresh Kumar ◽  
Melepurath Deepa ◽  
Avanish Kumar Srivastava

Light scattering and electron accepting characteristics of Ag nanostructures enhance the solar conversion efficiency of a TiO2/CdS film.


2019 ◽  
Vol 7 (28) ◽  
pp. 16984-16991 ◽  
Author(s):  
Hongyao Zhou ◽  
Haodong Liu ◽  
Yejing Li ◽  
Xiujun Yue ◽  
Xuefeng Wang ◽  
...  

An in situ formed poly(vinylene carbonate)–lithium iodide gel electrolyte enables stable cycling of lithium metal and a thermal shutdown function.


Sign in / Sign up

Export Citation Format

Share Document