scholarly journals A cerebellar internal model calibrates a feedback controller involved in sensorimotor control

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniil A. Markov ◽  
Luigi Petrucco ◽  
Andreas M. Kist ◽  
Ruben Portugues

AbstractAnimals must adapt their behavior to survive in a changing environment. Behavioral adaptations can be evoked by two mechanisms: feedback control and internal-model-based control. Feedback controllers can maintain the sensory state of the animal at a desired level under different environmental conditions. In contrast, internal models learn the relationship between the motor output and its sensory consequences and can be used to recalibrate behaviors. Here, we present multiple unpredictable perturbations in visual feedback to larval zebrafish performing the optomotor response and show that they react to these perturbations through a feedback control mechanism. In contrast, if a perturbation is long-lasting, fish adapt their behavior by updating a cerebellum-dependent internal model. We use modelling and functional imaging to show that the neuronal requirements for these mechanisms are met in the larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding internal models and how these can calibrate neuronal circuits involved in reactive behaviors depending on the interactions between animal and environment.

2020 ◽  
Author(s):  
Daniil A. Markov ◽  
Luigi Petrucco ◽  
Andreas M. Kist ◽  
Ruben Portugues

AbstractAnimals must adapt their behavior to survive in a changing environment. Behavioral adaptations can be evoked by two mechanisms: feedback control and internal-model-based control. Feedback controllers can maintain the sensory state of the animal at a desired level under different environmental conditions. In turn, internal models learn the relationship between behavior and resulting sensory consequences in order to modify the behavior when this relationship changes. Here, we present multiple perturbations in visual feedback to larval zebrafish performing the optomotor response and show that they react to these perturbations through a feedback control mechanism. In contrast, if a perturbation is long-lasting, fish adapt their behavior by updating a cerebellum-dependent internal model. We use modelling and functional imaging to show that neuronal requirements for these mechanisms are met in the larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding internal models and how these can calibrate neuronal circuits involved in reactive behaviors depending on the interactions between animal and environment.HighlightsBehavioral reactions to unexpected changes in visual feedback are implemented by a feedback control mechanismA long-lasting change in visual feedback updates the state of the neuronal controllerThe cerebellar internal model mediates this recalibration


2009 ◽  
Vol 297 (2) ◽  
pp. R412-R420 ◽  
Author(s):  
Shelby L. Steele ◽  
Kwok Hong Andy Lo ◽  
Vincent Wai Tsun Li ◽  
Shuk Han Cheng ◽  
Marc Ekker ◽  
...  

Fish exposed to hypoxia develop decreased heart rate, or bradycardia, the physiological significance of which remains unknown. The general muscarinic receptor antagonist atropine abolishes the development of this hypoxic bradycardia, suggesting the involvement of muscarinic receptors. In this study, we tested the hypothesis that the hypoxic bradycardia is mediated specifically by stimulation of the M2 muscarinic receptor, the most abundant subtype in the vertebrate heart. Zebrafish ( Danio rerio) were reared at two levels of hypoxia (30 and 40 Torr Po2) from the point of fertilization. In hypoxic fish, the heart rate was significantly lower than in normoxic controls from 2 to 10 days postfertilization (dpf). At the more severe level of hypoxia (30 Torr Po2), there were significant increases in the relative mRNA expression of M 2 and the cardiac type β-adrenergic receptors ( β1AR, β2aAR, and β2bAR) at 4 dpf. The hypoxic bradycardia was abolished (at 40 Torr Po2) or significantly attenuated (at 30 Torr Po2) in larvae experiencing M2 receptor knockdown (using morpholino antisense oligonucleotides). Sham-injected larvae exhibited typical hypoxic bradycardia in both hypoxic regimens. The expression of β1AR, β2aAR, β2bAR, and M 2 mRNA was altered at various stages between 1 and 4 dpf in larvae experiencing M2 receptor knockdown. Interestingly, M2 receptor knockdown revealed a cardioinhibitory role for the β2-adrenergic receptor. This is the first study to demonstrate a specific role of the M2 muscarinic receptor in the initiation of hypoxic bradycardia in fish.


Much has been said at the symposium about the pre-eminent role of the brain in the continuing emergence of man. Tobias has spoken of its explosive enlargement during the last 1 Ma, and how much of its enlargement in individual ontogeny is postnatal. We are born before our brains are fully grown and ‘wired up ’. During our long adolescence we build up internal models of the outside world and of the relations of parts of our bodies to it and to one another. Neurons that are present at birth spread their dendrites and project axons which acquire their myelin sheaths, and establish innumerable contacts with other neurons, over the years. New connections are formed; genetically endowed ones are stamped in or blanked off. People born without arms may grow up to use their toes in skills that are normally manual. Tobias, Darlington and others have stressed the enormous survival value of adaptive behaviour and the ‘positive feedback’ relation between biological and cultural evolution. The latter, the unique product of the unprecedentedly rapid biological evolution of big brains, advances on a time scale unknown to biological evolution.


1994 ◽  
Vol 188 (1) ◽  
pp. 89-101 ◽  
Author(s):  
T Teyke ◽  
S Schaerer

In apparatus for measuring optomotor behaviour, blind Mexican cave fish, Astyanax hubbsi, increase their swimming velocity upon rotation of a striped cylinder, i.e. in response to a solely visual stimulus. The fish follow the movements of the stripes at (i) rotation velocities between 60 degrees s-1 and 80 degrees s-1, (ii) light intensities of less than 20 lx and, (iii) stimulus widths subtending an angle of less than 1 °. Extirpation of the vestigial eye structures does not affect the response to the moving visual stimulus, which indicates that the response is mediated by extra-ocular photoreceptors. An optomotor response can be reliably evoked in a round test aquarium. Fish do not respond when the test aquarium contains environmental cues, such as bars on the wall or when a section of the round aquarium is divided off. This indicates that the fish obtain information about their environment from different sensory sources and that the visual stimulus is effective only when no other means of orientation are available. We suggest a modified theory of the optomotor response, which emphasizes the crucial role of the environment in eliciting the response and which permits behaviours more complex than just following the stimulus.


1997 ◽  
Vol 7 (4) ◽  
pp. 303-310
Author(s):  
James R. Lackner ◽  
Paul DiZio

The reafference model has frequently been used to explain spatial constancy during eye and head movements. We have found that its basic concepts also form part of the information processing necessary for the control and recalibration of reaching movements. Reaching was studied in a novel force environment–a rotating room that creates centripetal forces of the type that could someday substitute for gravity in space flight, and Coriolis forces which are side effects of rotation. We found that inertial, noncontacting Coriolis forces deviate the path and endpoint of reaching movements, a finding that shows the inadequacy of equilibrium position models of movement control. Repeated movements in the rotating room quickly lead to normal movement patterns and to a failure to perceive the perturbing forces. The first movements made after rotation stops, without Coriolis forces present, show mirror-image deviations and evoke perception of a perturbing force even though none is present. These patterns of sensorimotor control and adaptation can largely be explained on the basis of comparisons of efference copy, reafferent muscle spindle, and cutaneous mechanoreceptor signals. We also describe experiments on human iocomotion using an apparatus similar to that which Mittelstaedt used to study the optomotor response of the Eristalis fly. These results show that the reafference principle relates as well to the perception of the forces acting on and exerted by the body during voluntary locomotion.


Sign in / Sign up

Export Citation Format

Share Document