scholarly journals Species richness and identity both determine the biomass of global reef fish communities

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonathan S. Lefcheck ◽  
Graham J. Edgar ◽  
Rick D. Stuart-Smith ◽  
Amanda E. Bates ◽  
Conor Waldock ◽  
...  

AbstractChanging biodiversity alters ecosystem functioning in nature, but the degree to which this relationship depends on the taxonomic identities rather than the number of species remains untested at broad scales. Here, we partition the effects of declining species richness and changing community composition on fish community biomass across >3000 coral and rocky reef sites globally. We find that high biodiversity is 5.7x more important in maximizing biomass than the remaining influence of other ecological and environmental factors. Differences in fish community biomass across space are equally driven by both reductions in the total number of species and the disproportionate loss of larger-than-average species, which is exacerbated at sites impacted by humans. Our results confirm that sustaining biomass and associated ecosystem functions requires protecting diversity, most importantly of multiple large-bodied species in areas subject to strong human influences.

2019 ◽  
Author(s):  
Aaron Matthius Eger ◽  
Rebecca J. Best ◽  
Julia Kathleen Baum

Biodiversity and ecosystem function are often correlated, but there are multiple hypotheses about the mechanisms underlying this relationship. Ecosystem functions such as primary or secondary production may be maximized by species richness, evenness in species abundances, or the presence or dominance of species with certain traits. Here, we combined surveys of natural fish communities (conducted in July and August, 2016) with morphological trait data to examine relationships between diversity and ecosystem function (quantified as fish community biomass) across 14 subtidal eelgrass meadows in the Northeast Pacific (54° N 130° W). We employed both taxonomic and functional trait measures of diversity to investigate if ecosystem function is driven by species diversity (complementarity hypothesis) or by the presence or dominance of species with particular trait values (selection or dominance hypotheses). After controlling for environmental variation, we found that fish community biomass is maximized when taxonomic richness and functional evenness is low, and in communities dominated by species with particular trait values – those associated with benthic habitats and prey capture. While previous work on fish communities has found that species richness is positively correlated with ecosystem function, our results instead highlight the capacity for regionally prevalent and locally dominant species to drive ecosystem function in moderately diverse communities. We discuss these alternate links between community composition and ecosystem function and consider their divergent implications for ecosystem valuation and conservation prioritization.


2020 ◽  
Author(s):  
E Sebastián-González ◽  
JM Barbosa ◽  
JM Pérez-García ◽  
Z Morales-Reyes ◽  
F Botella ◽  
...  

© 2019 John Wiley & Sons Ltd Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large-scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion-consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species-poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human-impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As species-rich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human-dominated landscapes in the Anthropocene.


Author(s):  
Laís de Carvalho Teixeira Chaves ◽  
Cassiano Monteiro-Neto

Reef fish community structures at three sites in the state of Rio de Janeiro (Pedra Vermelha (PV), Cabo Frio Island—Arraial do Cabo; Mãe Island (MI), Itaipu—Niterói; Comprida Island (CI), Cagarras Archipelago—Rio de Janeiro) were investigated to assess differences in fish species composition, density and distribution of trophic groups, between sites, correlating the observed patterns of fish distribution with environmental factors. Thirty-six visual strip-transects yielded 67 species of 34 families. Studied locations shared at least 40% of all species, mostly of western Atlantic distribution. The three sites presented significant differences on diversity, density and species dominance. CI presented the highest values, except for total density, which was higher at PV, probably due to its partial degree of protection. MI showed the lowest values, suggesting possible impacts from the proximity to the shore. The main trophic categories were omnivores followed by mobile invertebrate feeders, in similarity to what was previously observed for south-eastern Brazil. Inherent habitat features of each location regarding depth, declivity, visibility and rugosity resulted in different species distribution and dominance patterns.


Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain biodiversity effects on ecosystem functioning has attracted intense recent interest, yet very few a priori manipulations of functional diversity have been attempted to date, especially from a food web perspective. Here, we simultaneously manipulated multiple functional traits of estuarine grazers and predators within multiple levels of species richness to test whether species richness or functional diversity is a better predictor of ecosystem functioning in multitrophic estuarine food webs. Community functional diversity better predicted the majority of ecosystem responses based on results from generalized linear mixed effects models. Structural equation modeling revealed that this outcome was independently attributable to functional diversity of both trophic levels, with stronger effects observed for predators. Functional complementarity was also important, as species with different combinations of traits influenced different ecosystem functions. Our study is the first to extend experimental investigations of functional diversity to a multilevel food web, and demonstrates that functional diversity is more effective than species richness in predicting ecosystem functioning in a food web context.


2020 ◽  
Author(s):  
E Sebastián-González ◽  
JM Barbosa ◽  
JM Pérez-García ◽  
Z Morales-Reyes ◽  
F Botella ◽  
...  

© 2019 John Wiley & Sons Ltd Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large-scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion-consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species-poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human-impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As species-rich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human-dominated landscapes in the Anthropocene.


Sign in / Sign up

Export Citation Format

Share Document