scholarly journals The LINC01119-SOCS5 axis as a critical theranostic in triple-negative breast cancer

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhenbo Tu ◽  
Johannes Schmoellerl ◽  
Odette Mariani ◽  
Yurong Zheng ◽  
Yi Hu ◽  
...  

AbstractThe development of triple-negative breast cancer (TNBC) is critically regulated by certain tumor-microenvironment-associated cells called mesenchymal stem/stromal cells (MSCs), which we and others have shown promote TNBC progression by activating pro-malignant signaling in neighboring cancer cells. Characterization of these cascades would better our understanding of TNBC biology and bring about therapeutics that eliminate the morbidity and mortality associated with advanced disease. Here, we focused on the emerging class of RNAs called long non-coding RNAs or lncRNAs and utilized a MSC-supported TNBC progression model to identify specific family members of functional relevance to TNBC pathogenesis. Indeed, although some have been described to play functional roles in TNBC, activities of lncRNAs as mediators of tumor-microenvironment-driven TNBC development remain to be fully explored. We report that MSCs stimulate robust expression of LINC01119 in TNBC cells, which in turn induces suppressor of cytokine signaling 5 (SOCS5), leading to accelerated cancer cell growth and tumorigenesis. We show that LINC01119 and SOCS5 exhibit tight correlation across multiple breast cancer gene sets and that they are highly enriched in TNBC patient cohorts. Importantly, we present evidence that the LINC01119-SOCS5 axis represents a powerful prognostic indicator of adverse outcomes in TNBC patients, and demonstrate that its repression severely impairs cancer cell growth. Altogether, our findings identify LINC01119 as a major driver of TNBC development and delineate critical non-coding RNA theranostics of potential translational utility in the management of advanced TNBC, a class of tumors in most need of effective and targeted therapy.

2020 ◽  
Vol 14 (8) ◽  
pp. 1868-1880 ◽  
Author(s):  
Rhona Millar ◽  
Anna Kilbey ◽  
Sarah‐Jane Remak ◽  
Tesa M. Severson ◽  
Sandeep Dhayade ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3352 ◽  
Author(s):  
Soni Khandelwal ◽  
Mallory Boylan ◽  
Julian Spallholz ◽  
Lauren Gollahon

Within the subtypes of breast cancer, those identified as triple negative for expression of estrogen receptor α (ESR1), progesterone receptor (PR) and human epidermal growth factor 2 (HER2), account for 10–20% of breast cancers, yet result in 30% of global breast cancer-associated deaths. Thus, it is critical to develop more targeted and efficacious therapies that also demonstrate less side effects. Selenium, an essential dietary supplement, is incorporated as selenocysteine (Sec) in vivo into human selenoproteins, some of which exist as anti-oxidant enzymes and are of importance to human health. Studies have also shown that selenium compounds hinder cancer cell growth and induce apoptosis in cancer cell culture models. The focus of this study was to investigate whether selenium-antibody conjugates could be effective against triple negative breast cancer cell lines using clinically relevant, antibody therapies targeted for high expressing breast cancers and whether selenium cytotoxicity was attenuated in normal breast epithelial cells. To that end, the humanized monoclonal IgG1 antibodies, Bevacizumab and Trastuzumab were conjugated with redox selenium to form Selenobevacizumab and Selenotrastuzumab and tested against the triple negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231 as well as a normal, immortalized, human mammary epithelial cell line, HME50-5E. VEGF and HER2 protein expression were assessed by Western. Although expression levels of HER2 were low or absent in all test cells, our results showed that Selenobevacizumab and Selenotrastuzumab produced superoxide (O2•−) anions in the presence of glutathione (GSH) and this was confirmed by a dihydroethidium (DHE) assay. Interestingly, superoxide was not elevated within HME50-5E cells assessed by DHE. The cytotoxicity of selenite and the selenium immunoconjugates towards triple negative cells compared to HME-50E cells was performed in a time and dose-dependent manner as measured by Trypan Blue exclusion, MTT assay and Annexin V assays. Selenobevacizumab and Selenotrastuzumab were shown to arrest the cancer cell growth but not the HME50-5E cells. These results suggest that selenium-induced toxicity may be effective in treating TNBC cells by exploiting different immunotherapeutic approaches potentially reducing the debilitating side effects associated with current TNBC anticancer drugs. Thus, clinically relevant, targeting antibody therapies may be repurposed for TNBC treatment by attachment of redox selenium.


2020 ◽  
Author(s):  
Rhona Millar ◽  
Anna Kilbey ◽  
Sarah-Jane Remak ◽  
Tesa M. Severson ◽  
Sandeep Dhayade ◽  
...  

AbstractTriple negative breast cancer is the most aggressive subtype of breast cancer with poor prognosis and high rates of relapse. The lack of actionable targets for TNBC has contributed to the high mortality rates of this disease, and new candidate molecules for potential manipulation are urgently required. Here, we show that macrophage-stimulating protein (MSP) and its tyrosine kinase receptor, RON, are potent drivers of cancer cell growth and tumor progression in a mouse model of TNBC driven by the loss of Trp53 and Brca1. After comparison of two genetically engineered mouse models of TNBC, we found that mammary tumors from K14-Cre;Brca1F/F;Trp53F/F (KB1P) mice exhibit high endogenous levels of MSP and RON expression. We show that MSP stimulates AKT and ERK1/2 activation as well as cancer cell growth in KB1P cell lines, while genetic and pharmacological inhibition of RON prevents these effects. Similarly, KB1P tumor progression in mice was robustly attenuated by treatment with a RON inhibitor with accompanied reduction in the proliferation marker, Ki-67. Our findings in a mouse model where MSP and RON expression are naturally increased provide evidence that this receptor and its ligand are viable candidate molecules for targeted treatment of TNBC.


Oncogene ◽  
2018 ◽  
Vol 38 (7) ◽  
pp. 1106-1120 ◽  
Author(s):  
Dan-Dan Zhang ◽  
Yue Li ◽  
Yuan Xu ◽  
Jaejik Kim ◽  
Shuang Huang

Sign in / Sign up

Export Citation Format

Share Document