scholarly journals A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Liang Hong ◽  
Kaiqi Yang ◽  
Ming Tang

AbstractAntisite defects are a type of point defect ubiquitously present in intercalation compounds for energy storage applications. While they are often considered a deleterious feature, here we elucidate a mechanism of antisite defects enhancing lithium intercalation kinetics in LiFePO4 by accelerating the FePO4 → LiFePO4 phase transformation. Although FeLi antisites block Li movement along the [010] migration channels in LiFePO4, phase-field modeling reveals that their ability to enhance Li diffusion in other directions significantly increases the active surface area for Li intercalation in the surface-reaction-limited kinetic regime, which results in order-of-magnitude improvement in the phase transformation rate compared to defect-free particles. Antisite defects also promote a more uniform reaction flux on (010) surface and prevent the formation of current hotspots under galvanostatic (dis)charging conditions. We analyze the scaling relation between the phase boundary speed, Li diffusivity and particle dimensions and derive the criteria for the co-optimization of defect content and particle geometry. A surprising prediction is that (100)-oriented LiFePO4 plates could potentially deliver better performance than (010)-oriented plates when the Li intercalation process is surface-reaction-limited. Our work suggests tailoring antisite defects as a general strategy to improve the rate performance of phase-changing battery compounds with strong diffusion anisotropy.

2010 ◽  
Vol 22 (21) ◽  
pp. 5845-5855 ◽  
Author(s):  
Yu-Hua Kao ◽  
Ming Tang ◽  
Nonglak Meethong ◽  
Jianming Bai ◽  
W. Craig Carter ◽  
...  

Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


Sign in / Sign up

Export Citation Format

Share Document