scholarly journals Severity of heterosubtypic influenza virus infection in ferrets is reduced by live attenuated influenza vaccine

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Anthony C. Marriott ◽  
Karen E. Gooch ◽  
Phillip J. Brown ◽  
Kathryn A. Ryan ◽  
Nicola J. Jones ◽  
...  

AbstractLive attenuated influenza vaccine (LAIV) is widely used to protect humans from seasonal influenza infection, particularly in children. In contrast to inactivated vaccines, the LAIV can induce both mucosal and cellular immune responses. Here we show that a single dose of monovalent H1N1pdm09-specific LAIV in the ferret model is fully protective against a subsequent wild-type H1N1pdm09 challenge, and furthermore reduces the severity of disease following challenge with a different influenza A subtype (H3N2). The reduced severity comprised reductions in weight loss and fever, as well as more rapid clearance of virus, compared to non-vaccinated H3N2-challenged ferrets. No H3N2-neutralizing antibodies were detected in vaccinated ferret sera. Rather, heterosubtypic protection correlated with interferon-gamma+ (IFN-γ+) T-cell responses measured in peripheral blood and in lung lymphocytes. The IFN-γ+ cells were cross-reactive to H3N2 virus even when obtained from vaccinated animals that had never been exposed to H3N2 virus. We believe this study provides compelling evidence that the LAIV can provide a significant reduction in infection and symptoms when challenged with heterosubtypic influenza strains not included in the LAIV, highlighting the importance of cross-reactive T-cells in the design of a universal influenza vaccine.

Author(s):  
Nicki L Boddington ◽  
Isabelle Pearson ◽  
Heather Whitaker ◽  
Punam Mangtani ◽  
Richard G Pebody

Abstract This systematic review assesses the literature for estimates of influenza vaccine effectiveness (IVE) against laboratory-confirmed influenza-associated hospitalisation in children. Studies of any design to 08 June 2020 were included if the outcome was hospitalisation, participants were 17 years old or less and influenza infection was laboratory-confirmed. A random-effects meta-analysis of 37 studies that used a test-negative design gave a pooled seasonal IVE against hospitalisation of 53.3% (47.2-58.8) for any influenza. IVE was higher against influenza A/H1N1pdm09 (68.7%, 56.9-77.2) and lowest against influenza A/H3N2 (35.8%, 23.4-46.3). Estimates by vaccine type ranged from 44.3% (30.1-55.7) for LAIV to 68.9% (53.6-79.2) for inactivated vaccines. IVE estimates were higher in seasons when the circulating influenza strains were antigenically matched to vaccine strains (59.3%, 48.3-68.0). Influenza vaccination gives moderate overall protection against influenza-associated hospitalisation in children supporting annual vaccination. IVE varies by influenza subtype and vaccine type.


2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Andrew Smith ◽  
Laura Rodriguez ◽  
Maya El Ghouayel ◽  
Aitor Nogales ◽  
Jeffrey M. Chamberlain ◽  
...  

ABSTRACT Influenza A virus (IAV) causes significant morbidity and mortality, despite the availability of viral vaccines. The efficacy of live attenuated influenza vaccines (LAIVs) has been especially poor in recent years. One potential reason is that the master donor virus (MDV), on which all LAIVs are based, contains either the internal genes of the 1960 A/Ann Arbor/6/60 or the 1957 A/Leningrad/17/57 H2N2 viruses (i.e., they diverge considerably from currently circulating strains). We previously showed that introduction of the temperature-sensitive (ts) residue signature of the AA/60 MDV into a 2009 pandemic A/California/04/09 H1N1 virus (Cal/09) results in only 10-fold in vivo attenuation in mice. We have previously shown that the ts residue signature of the Russian A/Leningrad/17/57 H2N2 LAIV (Len LAIV) more robustly attenuates the prototypical A/Puerto Rico/8/1934 (PR8) H1N1 virus. In this work, we therefore introduced the ts signature from Len LAIV into Cal/09. This new Cal/09 LAIV is ts in vitro, highly attenuated (att) in mice, and protects from a lethal homologous challenge. In addition, when our Cal/09 LAIV with PR8 hemagglutinin and neuraminidase was used to vaccinate mice, it provided enhanced protection against a wild-type Cal/09 challenge relative to a PR8 LAIV with the same attenuating mutations. These findings suggest it may be possible to improve the efficacy of LAIVs by better matching the sequence of the MDV to currently circulating strains. IMPORTANCE Seasonal influenza infection remains a major cause of disease and death, underscoring the need for improved vaccines. Among current influenza vaccines, the live attenuated influenza vaccine (LAIV) is unique in its ability to elicit T-cell immunity to the conserved internal proteins of the virus. Despite this, LAIV has shown limited efficacy in recent years. One possible reason is that the conserved, internal genes of all current LAIVs derive from virus strains that were isolated between 1957 and 1960 and that, as a result, do not resemble currently circulating influenza viruses. We have therefore developed and tested a new LAIV, based on a currently circulating pandemic strain of influenza. Our results show that this new LAIV elicits improved protective immunity compared to a more conventional LAIV.


Pathogens ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 86 ◽  
Author(s):  
Thomas A. Hilimire ◽  
Aitor Nogales ◽  
Kevin Chiem ◽  
Javier Ortego ◽  
Luis Martinez-Sobrido

Seasonal influenza epidemics remain one of the largest public health burdens nowadays. The best and most effective strategy to date in preventing influenza infection is a worldwide vaccination campaign. Currently, two vaccines are available to the public for the treatment of influenza infection, the chemically Inactivated Influenza Vaccine (IIV) and the Live Attenuated Influenza Vaccine (LAIV). However, the LAIV is not recommended for parts of the population, such as children under the age of two, immunocompromised individuals, the elderly, and pregnant adults. In order to improve the safety of the LAIV and make it available to more of the population, we sought to further attenuate the LAIV. In this study, we demonstrate that the influenza A virus (IAV) master donor virus (MDV) A/Ann Arbor/6/60 H2N2 LAIV can inhibit host gene expression using both the PA-X and NS1 proteins. Furthermore, we show that by removing PA-X, we can limit the replication of the MDV LAIV in a mouse model, while maintaining full protective efficacy. This work demonstrates a broadly applicable strategy of tuning the amount of host antiviral responses induced by the IAV MDV for the development of newer and safer LAIVs. Moreover, our results also demonstrate, for the first time, the feasibility of genetically manipulating the backbone of the IAV MDV to improve the efficacy of the current IAV LAIV.


2016 ◽  
Vol 21 (42) ◽  
Author(s):  
Norio Sugaya ◽  
Masayoshi Shinjoh ◽  
Chiharu Kawakami ◽  
Yoshio Yamaguchi ◽  
Makoto Yoshida ◽  
...  

The 2014/15 influenza season in Japan was characterised by predominant influenza A(H3N2) activity; 99% of influenza A viruses detected were A(H3N2). Subclade 3C.2a viruses were the major epidemic A(H3N2) viruses, and were genetically distinct from A/New York/39/2012(H3N2) of 2014/15 vaccine strain in Japan, which was classified as clade 3C.1. We assessed vaccine effectiveness (VE) of inactivated influenza vaccine (IIV) in children aged 6 months to 15 years by test-negative case–control design based on influenza rapid diagnostic test. Between November 2014 and March 2015, a total of 3,752 children were enrolled: 1,633 tested positive for influenza A and 42 for influenza B, and 2,077 tested negative. Adjusted VE was 38% (95% confidence intervals (CI): 28 to 46) against influenza virus infection overall, 37% (95% CI: 27 to 45) against influenza A, and 47% (95% CI: -2 to 73) against influenza B. However, IIV was not statistically significantly effective against influenza A in infants aged 6 to 11 months or adolescents aged 13 to 15 years. VE in preventing hospitalisation for influenza A infection was 55% (95% CI: 42 to 64). Trivalent IIV that included A/New York/39/2012(H3N2) was effective against drifted influenza A(H3N2) virus, although vaccine mismatch resulted in low VE.


Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 560 ◽  
Author(s):  
Luis Martínez-Sobrido ◽  
Olve Peersen ◽  
Aitor Nogales

Live attenuated influenza vaccines (LAIV) have prevented morbidity and mortality associated with influenza viral infections for many years and represent the best therapeutic option to protect against influenza viral infections in humans. However, the development of LAIV has traditionally relied on empirical methods, such as the adaptation of viruses to replicate at low temperatures. These approaches require an extensive investment of time and resources before identifying potential vaccine candidates that can be safely implemented as LAIV to protect humans. In addition, the mechanism of attenuation of these vaccines is poorly understood in some cases. Importantly, LAIV are more efficacious than inactivated vaccines because their ability to mount efficient innate and adaptive humoral and cellular immune responses. Therefore, the design of potential LAIV based on known properties of viral proteins appears to be a highly appropriate option for the treatment of influenza viral infections. For that, the viral RNA synthesis machinery has been a research focus to identify key amino acid substitutions that can lead to viral attenuation and their use in safe, immunogenic, and protective LAIV. In this review, we discuss the potential to manipulate the influenza viral RNA-dependent RNA polymerase (RdRp) complex to generate attenuated forms of the virus that can be used as LAIV for the treatment of influenza viral infections, one of the current and most effective prophylactic options for the control of influenza in humans.


2006 ◽  
Vol 80 (23) ◽  
pp. 11756-11766 ◽  
Author(s):  
Xiao-Song He ◽  
Tyson H. Holmes ◽  
Caiqiu Zhang ◽  
Kutubuddin Mahmood ◽  
George W. Kemble ◽  
...  

ABSTRACT The patterns of cellular immune responses induced by live attenuated influenza vaccine (LAIV) versus those of the trivalent inactivated influenza vaccine (TIV) have not been studied extensively, especially in children. The goals of this study were to evaluate the effects of TIV and LAIV immunization on cellular immunity to live influenza A virus in children and adults and to explore factors associated with variations in responses to influenza vaccines among individuals. A gamma interferon (IFN-γ) flow cytometry assay was used to measure IFN-γ-producing (IFN-γ+) NK and T cells in peripheral blood mononuclear cell cultures stimulated with a live influenza A virus strain before and after LAIV or TIV immunization of children and adults. The mean percentages of influenza A virus-specific IFN-γ+ CD4 and CD8 T cells increased significantly after LAIV, but not TIV, immunization in children aged 5 to 9 years. No increases in the mean levels of influenza A virus-reactive IFN-γ+ T cells and NK cells were observed in adults given LAIV or TIV. TIV induced a significant increase in influenza A virus-reactive T cells in 6-month- to 4-year-old children; LAIV was not evaluated in this age group. The postvaccination changes (n-fold) in the percentages of influenza A virus-reactive IFN-γ+ T and NK cells in adults were highly variable and correlated inversely with the prevaccination percentages, in particular with that of the CD56dim NK cell subset. In conclusion, our findings identify age, type of vaccine, and prevaccination levels of immune reactivity to influenza A virus as factors significantly associated with the magnitude of cellular immune responses to influenza vaccines.


2017 ◽  
Vol 22 (44) ◽  
Author(s):  
Richard Pebody ◽  
Fiona Warburton ◽  
Joanna Ellis ◽  
Nick Andrews ◽  
Alison Potts ◽  
...  

Introduction The United Kingdom is in the fourth season of introducing a universal childhood influenza vaccine programme. The 2016/17 season saw early influenza A(H3N2) virus circulation with care home outbreaks and increased excess mortality particularly in those 65 years or older. Virus characterisation data indicated emergence of genetic clusters within the A(H3N2) 3C.2a group which the 2016/17 vaccine strain belonged to. Methods: The test-negative case–control (TNCC) design was used to estimate vaccine effectiveness (VE) against laboratory confirmed influenza in primary care. Results: Adjusted end-of-season vaccine effectiveness (aVE) estimates were 39.8% (95% confidence interval (CI): 23.1 to 52.8) against all influenza and 40.6% (95% CI: 19.0 to 56.3) in 18–64-year-olds, but no significant aVE in ≥ 65-year-olds. aVE was 65.8% (95% CI: 30.3 to 83.2) for 2–17-year-olds receiving quadrivalent live attenuated influenza vaccine. Discussion: The findings continue to provide support for the ongoing roll-out of the paediatric vaccine programme, with a need for ongoing evaluation. The importance of effective interventions to protect the ≥ 65-year-olds remains.


2016 ◽  
Vol 21 (38) ◽  
Author(s):  
Richard Pebody ◽  
Fiona Warburton ◽  
Joanna Ellis ◽  
Nick Andrews ◽  
Alison Potts ◽  
...  

The United Kingdom (UK) is in the third season of introducing universal paediatric influenza vaccination with a quadrivalent live attenuated influenza vaccine (LAIV). The 2015/16 season in the UK was initially dominated by influenza A(H1N1)pdm09 and then influenza of B/Victoria lineage, not contained in that season’s adult trivalent inactivated influenza vaccine (IIV). Overall adjusted end-of-season vaccine effectiveness (VE) was 52.4% (95% confidence interval (CI): 41.0–61.6) against influenza-confirmed primary care consultation, 54.5% (95% CI: 41.6–64.5) against influenza A(H1N1)pdm09 and 54.2% (95% CI: 33.1–68.6) against influenza B. In 2–17 year-olds, adjusted VE for LAIV was 57.6% (95% CI: 25.1 to 76.0) against any influenza, 81.4% (95% CI: 39.6–94.3) against influenza B and 41.5% (95% CI: −8.5 to 68.5) against influenza A(H1N1)pdm09. These estimates demonstrate moderate to good levels of protection, particularly against influenza B in children, but relatively less against influenza A(H1N1)pdm09. Despite lineage mismatch in the trivalent IIV, adults younger than 65 years were still protected against influenza B. These results provide reassurance for the UK to continue its influenza immunisation programme planned for 2016/17.


1997 ◽  
Vol 272 (2) ◽  
pp. R621-R630 ◽  
Author(s):  
W. Kozak ◽  
V. Poli ◽  
D. Soszynski ◽  
C. A. Conn ◽  
L. R. Leon ◽  
...  

Interleukin-6 (IL-6), among other cytokines, is thought to be involved in the regulation of sickness behavior (e.g., anorexia, cachexia, fever, and lethargy) induced by infections bacterial and viral origin) and sterile tissue necrosis (burns and surgical traumas). Mice deficient in IL-6 (IL-6 KO) were generated by gene targeting. Homozygous IL-6 KO male and female mice and their appropriate controls were implanted with biotelemeters to monitor body temperature (Tb) and motor activity (Act). Normal circadian rhythms in Tb and Act as well as rates of food intake and weight gain did not differ significantly between sex-matched IL-6 KO and control groups at 30 degrees C in a 12:12-h light-dark cycle. Sterile tissue damage was induced in mice by subcutaneous injection of turpentine (0.1 ml, left hindlimb). Influenza pneumonitis was induced by intranasal inoculation of mouse-adapted influenza A virus (17.5 plaque-forming units). Lack of IL-6 completely prevented fever, anorexia, and cachexia because of turpentine abscess in both sexes. It did not prevent lethargy, although IL-6 KO mice recovered to normal Act significantly sooner than wild-type mice. Symptoms of sickness were only slightly modified during influenza virus infection in IL-6 KO mice. Attenuation of sickness behavior was more pronounced in IL-6 KO female than in male mice. We conclude that, although IL-6 is induced during both turpentine abscess and influenza infection, this cytokine appears to be more critical in induction of the symptoms of sickness behavior during sterile tissue abscess than during influenza infection.


Sign in / Sign up

Export Citation Format

Share Document