scholarly journals Is the oral microbiome a source to enhance mucosal immunity against infectious diseases?

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Camille Zenobia ◽  
Karla-Luise Herpoldt ◽  
Marcelo Freire

AbstractMucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.

2021 ◽  
Vol 22 (3) ◽  
pp. 312-321
Author(s):  
J. Tonui ◽  
W. Chepkutto ◽  
J. Rotich

Coronavirus disease 2019 (COVID-19) pandemic began in December 2019 in Wuhan City China where it is believed to have been transmitted to humans from an unknown animal species. The public health, social and economic impact of the pandemic world over is detrimental. Health care providers at the frontline in the fight against COVID-19 are at the greatest risk of infection and so far, many have been infected and some have already died from the disease. Thus, it is imperative that healthcare providers have adequate knowledge of infectious diseases and microbial pathogens to comprehend the scale of risk for better recognition and response. Microbiological concepts of infection prevention and control, hand hygiene and aseptic techniques are essential in slowing down the spread of the virus. COVID-19 has proven that infectious agents can emerge from any region in the world and can spread rapidly with ominous consequences to all humanity. This narrative review discusses the role of college-learnt microbiology in health care provider preparedness for emerging infectious diseases in light of the current pandemic. Keywords: Emerging; Infections; Preparedness; Response; Microbiology; COVID-19; Training


2004 ◽  
Vol 359 (1447) ◽  
pp. 1049-1058 ◽  
Author(s):  
A. J. McMichael

During the processes of human population dispersal around the world over the past 50 000–100 000 years, along with associated cultural evolution and inter–population contact and conflict, there have been several major transitions in the relationships of Homo sapiens with the natural world, animate and inanimate. Each of these transitions has resulted in the emergence of new or unfamiliar infectious diseases. The three great historical transitions since the initial advent of agriculture and livestock herding, from ca . 10 000 years ago, occurred when: (i) early agrarian–based settlements enabled sylvatic enzootic microbes to make contact with Homo sapiens ; (ii) early Eurasian civilizations (such as the Greek and Roman empires, China and south Asia) came into military and commercial contact, ca . 3000–2000 years ago, swapping their dominant infections; and (iii) European expansionism, over the past five centuries, caused the transoceanic spread of often lethal infectious diseases. This latter transition is best known in relation to the conquest of the Americas by Spanish conquistadores , when the inadvertent spread of measles, smallpox and influenza devastated the Amerindian populations. Today, we are living through the fourth of these great transitional periods. The contemporary spread and increased lability of various infectious diseases, new and old, reflect the combined and increasingly widespread impacts of demographic, environmental, behavioural, technological and other rapid changes in human ecology. Modern clinical medicine has, via blood transfusion, organ transplantation, and the use of hypodermic syringes, created new opportunities for microbes. These have contributed to the rising iatrogenic problems of hepatitis C, HIV/AIDS and several other viral infections. Meanwhile, the injudicious use of antibiotics has been a rare instance of human action actually increasing ‘biodiversity’. Another aspect of this fourth transition is that modern hyper–hygienic living restricts microbial exposure in early life. This, in the 1950s, may have contributed to an epidemic of more serious, disabling, poliomyelitis, affecting older children than those affected in earlier, more endemic decades. As with previous human–microbe transitions, a new equilibrial state may lie ahead. However, it certainly will not entail a world free of infectious diseases. Any mature, sustainable, human ecology must come to terms with both the need for, and the needs of, the microbial species that help to make up the interdependent system of life on Earth. Humans and microbes are not ‘at war’; rather, both parties are engaged in amoral, self–interested, coevolutionary struggle. We need to understand better, and therefore anticipate, the dynamics of that process.


2003 ◽  
Vol 31 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Jun Wang ◽  
Takashi Murakami ◽  
Shigeto Yoshida ◽  
Hiroyuki Matsuoka ◽  
Akira Ishii ◽  
...  

2000 ◽  
Vol 13 (4) ◽  
pp. 602-614 ◽  
Author(s):  
Margaret A. Keller ◽  
E. Richard Stiehm

SUMMARY Antibodies have been used for over a century in the prevention and treatment of infectious disease. They are used most commonly for the prevention of measles, hepatitis A, hepatitis B, tetanus, varicella, rabies, and vaccinia. Although their use in the treatment of bacterial infection has largely been supplanted by antibiotics, antibodies remain a critical component of the treatment of diptheria, tetanus, and botulism. High-dose intravenous immunoglobulin can be used to treat certain viral infections in immunocompromised patients (e.g., cytomegalovirus, parvovirus B19, and enterovirus infections). Antibodies may also be of value in toxic shock syndrome, Ebola virus, and refractory staphylococcal infections. Palivizumab, the first monoclonal antibody licensed (in 1998) for an infectious disease, can prevent respiratory syncytial virus infection in high-risk infants. The development and use of additional monoclonal antibodies to key epitopes of microbial pathogens may further define protective humoral responses and lead to new approaches for the prevention and treatment of infectious diseases.


GigaScience ◽  
2020 ◽  
Vol 9 (8) ◽  
Author(s):  
Dima Kagan ◽  
Jacob Moran-Gilad ◽  
Michael Fire

Abstract Background COVID-19 is the most rapidly expanding coronavirus outbreak in the past 2 decades. To provide a swift response to a novel outbreak, prior knowledge from similar outbreaks is essential. Results Here, we study the volume of research conducted on previous coronavirus outbreaks, specifically SARS and MERS, relative to other infectious diseases by analyzing >35 million articles from the past 20 years. Our results demonstrate that previous coronavirus outbreaks have been understudied compared with other viruses. We also show that the research volume of emerging infectious diseases is very high after an outbreak and decreases drastically upon the containment of the disease. This can yield inadequate research and limited investment in gaining a full understanding of novel coronavirus management and prevention. Conclusions Independent of the outcome of the current COVID-19 outbreak, we believe that measures should be taken to encourage sustained research in the field.


2011 ◽  
Vol 6 (4) ◽  
pp. 371-371
Author(s):  
Fumiko Kasuga

Recent developments in medicine and anti-microbial treatment based on intensive research on basic microbiology have successfully been controlling many infectious diseases to be nonfatal. As stated by Dr. Nobuhiko Okabe in the first section of this issue, emerging and re-emerging infectious diseases still threaten human lives and health both in developing and industrialized countries. A multiprefectural outbreak of enterohemorrhagic E. coli (EHEC) O111 and O157 due to raw beef consumption took the lives of victims, including young children, earlier this year in Japan, following which people worldwide were panicked by news from Europe of a huge outbreak of EHEC O104. Infectious diseases result from interaction between pathogens and humans including our behaviors. The Journal of Disaster Research has already drawn readers’ attention to infectious diseases in its special issue on “Our Social Activities Are Always Related to Outbreaks of Infectious Diseases,” with Guest Editor Dr. Masayuki Saijo in JDR Vol.4, No.5, October, 2009. That issue reviewed the background behind infectious disease emergence and reemergence using examples of viral diseases that could cause serious public health concerns, and emphasized the need for preparedness and responses, including against bioterrorism. The present issue again reminds readers of the threat of infectious diseases by demonstrating bacterial and viral infections, focusing more on basic knowledge about these pathogens. Disease history, and epidemiology and the microbiological nature of pathogens and infection pathways are summarized. Treatment, vaccination and other control measures, and law and other social systems for controlling disease are also reviewed. We believe that a better understanding of pathogens will enable society to build better strategies for overcoming problems with emerging and reemerging infectious diseases, such as appropriate preventive measures, treatment and control for preventing outbreaks from expanding. We also hope that such considerations are also useful to disaster control experts in other areas. I would like to express my sincere gratitude to the authors and reviewers for their great contributions to this issue, and to the Editorial Board and the Secretariat of the Journal of Disaster Research for their continuous encouragement and assistance.


Author(s):  
Dima Kagan ◽  
Jacob Moran-Gilad ◽  
Michael Fire

AbstractCOVID-19 is the most rapidly expanding coronavirus outbreak in the past two decades. To provide a swift response to a novel outbreak, prior knowledge from similar outbreaks is essential. Here, we study the volume of research conducted on previous coronavirus outbreaks, specifically SARS and MERS, relative to other infectious diseases by analyzing over 35 million papers from the last 20 years. Our results demonstrate that previous coronavirus outbreaks have been understudied compared to other viruses. We also show that the research volume of emerging infectious diseases is very high after an outbreak and drops drastically upon the containment of the disease. This can yield inadequate research and limited investment in gaining a full understanding of novel coronavirus management and prevention. Independent of the outcome of the current COVID-19 outbreak, we believe that measures should be taken to encourage sustained research in the field.


2020 ◽  
Vol 3 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Russel J Reiter ◽  
Qiang Ma ◽  
Ramaswamy Sharma

This review summarizes published reports on the utility of melatonin as a treatment for virus-mediated diseases. Of special note are the data related to the role of melatonin in influencing Ebola virus disease. This infection and deadly condition has no effective treatment and the published works documenting the ability of melatonin to attenuate the severity of viral infections generally and Ebola infection specifically are considered. The capacity of melatonin to prevent one of the major complications of an Ebola infection, i.e., the hemorrhagic shock syndrome, which often contributes to the high mortality rate, is noteworthy. Considering the high safety profile of melatonin, the fact that it is easily produced, inexpensive and can be self-administered makes it an attractive potential treatment for Ebola virus pathology.  


Sign in / Sign up

Export Citation Format

Share Document