scholarly journals Vaccine genetics of IGHV1-2 VRC01-class broadly neutralizing antibody precursor naïve human B cells

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jeong Hyun Lee ◽  
Laura Toy ◽  
Justin T. Kos ◽  
Yana Safonova ◽  
William R. Schief ◽  
...  

AbstractA successful HIV vaccine eliciting broadly neutralizing antibodies (bnAbs) must overcome the hurdle of being able to activate naive precursor B cells encoding features within their germline B cell receptors (BCR) that allow recognition of broadly neutralizing epitopes. Knowledge of whether bnAb precursor B cells are circulating at sufficient frequencies within individuals in communities heavily impacted by HIV may be important. Using a germline-targeting eOD-GT8 immunogen and high-throughput droplet-based single-cell BCR sequencing, we demonstrate that large numbers of paired BCR sequences from multiple donors can be efficiently screened to elucidate precursor frequencies of rare, naive VRC01-class B cells. Further, we analyzed IGHV1-2 allelic usage among three different cohorts; we find that IGHV1-2 alleles traditionally thought to be incompatible with VRC01-class responses are relatively common in various human populations and that germline variation within IGHV1-2 associates with gene usage frequencies in the naive BCR repertoire.

Author(s):  
Jeong Hyun Lee ◽  
Laura Toy ◽  
Justin T. Kos ◽  
Yana Safonova ◽  
William R. Schief ◽  
...  

ABSTRACTA successful HIV vaccine must overcome the hurdle of being able to activate naïve precursor B cells encoding features within their germline B cell receptors (BCR) that allow recognition of broadly neutralizing epitopes. Knowledge of whether broadly neutralizing antibody (bnAb) precursor B cells are circulating at sufficient frequencies within individuals in communities heavily impacted by HIV may be important. Using a germline-targeting eOD-GT8 immunogen and high-throughput droplet-based single cell BCR sequencing, we demonstrate that large numbers of paired BCR sequences from multiple donors can be efficiently screened to elucidate precursor frequencies of rare, naïve VRC01-class B cells. The results indicate that IGHV1-2 alleles incompatible with VRC01-class responses are relatively common in various human populations, and germline variation within IGHV1-2 associates with gene usage frequencies in the naïve BCR repertoire.


2019 ◽  
Vol 216 (10) ◽  
pp. 2331-2347 ◽  
Author(s):  
Tara Bancroft ◽  
Blair L. DeBuysscher ◽  
Connor Weidle ◽  
Allison Schwartz ◽  
Abigail Wall ◽  
...  

Many tested vaccines fail to provide protection against disease despite the induction of antibodies that bind the pathogen of interest. In light of this, there is much interest in rationally designed subunit vaccines that direct the antibody response to protective epitopes. Here, we produced a panel of anti-idiotype antibodies able to specifically recognize the inferred germline version of the human immunodeficiency virus 1 (HIV-1) broadly neutralizing antibody b12 (iglb12). We determined the crystal structure of two anti-idiotypes in complex with iglb12 and used these anti-idiotypes to identify rare naive human B cells expressing B cell receptors with similarity to iglb12. Immunization with a multimerized version of this anti-idiotype induced the proliferation of transgenic murine B cells expressing the iglb12 heavy chain in vivo, despite the presence of deletion and anergy within this population. Together, our data indicate that anti-idiotypes are a valuable tool for the study and induction of potentially protective antibodies.


Science ◽  
2019 ◽  
Vol 366 (6470) ◽  
pp. eaax4380 ◽  
Author(s):  
Jon M. Steichen ◽  
Ying-Cing Lin ◽  
Colin Havenar-Daughton ◽  
Simone Pecetta ◽  
Gabriel Ozorowski ◽  
...  

Vaccine induction of broadly neutralizing antibodies (bnAbs) to HIV remains a major challenge. Germline-targeting immunogens hold promise for initiating the induction of certain bnAb classes; yet for most bnAbs, a strong dependence on antibody heavy chain complementarity-determining region 3 (HCDR3) is a major barrier. Exploiting ultradeep human antibody sequencing data, we identified a diverse set of potential antibody precursors for a bnAb with dominant HCDR3 contacts. We then developed HIV envelope trimer–based immunogens that primed responses from rare bnAb-precursor B cells in a mouse model and bound a range of potential bnAb-precursor human naïve B cells in ex vivo screens. Our repertoire-guided germline-targeting approach provides a framework for priming the induction of many HIV bnAbs and could be applied to most HCDR3-dominant antibodies from other pathogens.


2015 ◽  
Vol 112 (33) ◽  
pp. 10473-10478 ◽  
Author(s):  
Davide Corti ◽  
Jincun Zhao ◽  
Mattia Pedotti ◽  
Luca Simonelli ◽  
Sudhakar Agnihothram ◽  
...  

Middle East Respiratory Syndrome (MERS) is a highly lethal pulmonary infection caused by a previously unidentified coronavirus (CoV), likely transmitted to humans by infected camels. There is no licensed vaccine or antiviral for MERS, therefore new prophylactic and therapeutic strategies to combat human infections are needed. In this study, we describe, for the first time, to our knowledge, the isolation of a potent MERS-CoV–neutralizing antibody from memory B cells of an infected individual. The antibody, named LCA60, binds to a novel site on the spike protein and potently neutralizes infection of multiple MERS-CoV isolates by interfering with the binding to the cellular receptor CD26. Importantly, using mice transduced with adenovirus expressing human CD26 and infected with MERS-CoV, we show that LCA60 can effectively protect in both prophylactic and postexposure settings. This antibody can be used for prophylaxis, for postexposure prophylaxis of individuals at risk, or for the treatment of human cases of MERS-CoV infection. The fact that it took only 4 mo from the initial screening of B cells derived from a convalescent patient for the development of a stable chinese hamster ovary (CHO) cell line producing neutralizing antibodies at more than 5 g/L provides an example of a rapid pathway toward the generation of effective antiviral therapies against emerging viruses.


2015 ◽  
Vol 90 (5) ◽  
pp. 2208-2220 ◽  
Author(s):  
Srinika Ranasinghe ◽  
Damien Z. Soghoian ◽  
Madelene Lindqvist ◽  
Musie Ghebremichael ◽  
Faith Donaghey ◽  
...  

ABSTRACTAntigen-specific CD4+T helper cell responses have long been recognized to be a critical component of effective vaccine immunity. CD4+T cells are necessary to generate and maintain humoral immune responses by providing help to antigen-specific B cells for the production of antibodies. In HIV infection, CD4+T cells are thought to be necessary for the induction of Env-specific broadly neutralizing antibodies. However, few studies have investigated the role of HIV-specific CD4+T cells in association with HIV neutralizing antibody activity in vaccination or natural infection settings. Here, we conducted a comprehensive analysis of HIV-specific CD4+T cell responses in a cohort of 34 untreated HIV-infected controllers matched for viral load, with and without neutralizing antibody breadth to a panel of viral strains. Our results show that the breadth and magnitude of Gag-specific CD4+T cell responses were significantly higher in individuals with neutralizing antibodies than in those without neutralizing antibodies. The breadth of Gag-specific CD4+T cell responses was positively correlated with the breadth of neutralizing antibody activity. Furthermore, the breadth and magnitude of gp41-specific, but not gp120-specific, CD4+T cell responses were significantly elevated in individuals with neutralizing antibodies. Together, these data suggest that robust Gag-specific CD4+T cells and, to a lesser extent, gp41-specific CD4+T cells may provide important intermolecular help to Env-specific B cells that promote the generation or maintenance of Env-specific neutralizing antibodies.IMPORTANCEOne of the earliest discoveries related to CD4+T cell function was their provision of help to B cells in the development of antibody responses. Yet little is known about the role of CD4+T helper responses in the setting of HIV infection, and no studies to date have evaluated the impact of HIV-specific CD4+T cells on the generation of antibodies that can neutralize multiple different strains of HIV. Here, we addressed this question by analyzing HIV-specific CD4+T cell responses in untreated HIV-infected persons with and without neutralizing antibodies. Our results indicate that HIV-infected persons with neutralizing antibodies have significantly more robust CD4+T cell responses targeting Gag and gp41 proteins than individuals who lack neutralizing antibodies. These associations suggest that Gag- and gp41-specific CD4+T cell responses may provide robust help to B cells for the generation or maintenance of neutralizing antibodies in natural HIV-infection.


2019 ◽  
Vol 77 (4) ◽  
Author(s):  
Chinnambedu Ravichandran Swathirajan ◽  
Pannerselvam Nandagopal ◽  
Ramachandran Vignesh ◽  
Aylur Kailasam Srikrishnan ◽  
Rajat Goyal ◽  
...  

ABSTRACT HIV-1 vaccine functioning relies on successful induction of broadly neutralizing antibodies (bNAbs). CXCR3− circulatory T-follicular helper (cTfh) cells are necessary for inducing B-cells for generating bNAbs. Recent studies have suggested that CXCR3+ Tfh cells might also influence bNAb production. Plasma samples from 34 ART-Naïve HIV-1 infected individuals [long-term nonprogressors (LTNP)—19; Progressors—13] were tested against a heterologous virus panel (n = 11) from subtypes A, B, C, G, AC, BC and AE. Frequencies of CXCR3+ and CXCR3− cTfh-like cells in peripheral circulation were studied using flow cytometry. LTNP showed significantly lower CXCR3+ and higher CXCR3− cTfh-like cell frequencies, while neutralization breadth was observed to be broader in progressors. A positive correlation was observed between bNAb breadth and potency with CXCR3+PD-1+ cTfh-like cells in LTNP. Based on neutralization breadth, 9 HIV-1 infected individuals were classified as ‘top neutralizers’ and 23 as ‘low neutralizers’ and they did not show any correlations with CXCR3+ and CXCR3− cTfh-like cells. These preliminary data suggest that CXCR3+ similar to CXCR3− might possess significant functional properties for driving B-cells to produce bNAbs. Hence, an HIV vaccine which is capable of optimal induction of CXCR3+ cTfh cells at germinal centers might confer superior protection against HIV.


2008 ◽  
Vol 82 (13) ◽  
pp. 6711-6720 ◽  
Author(s):  
Keigo Machida ◽  
Yasuteru Kondo ◽  
Jeffrey Y. Huang ◽  
Yung-Chia Chen ◽  
Kevin T.-H. Cheng ◽  
...  

ABSTRACT Hepatitis C virus (HCV) often causes persistent infection despite the presence of neutralizing antibodies against the virus in the sera of hepatitis C patients. HCV infects both hepatocytes and B cells through the binding of its envelope glycoprotein E2 to CD81, the putative viral receptor. Previously, we have shown that E2-CD81 interaction induces hypermutation of heavy-chain immunoglobulin (V H ) in B cells. We hypothesize that if HCV infects antibody-producing B cells, the resultant hypermutation of VH may lower the affinity and specificity of the HCV-specific antibodies, enabling HCV to escape from immune surveillance. To test this hypothesis, we infected human hybridoma clones producing either neutralizing or non-neutralizing anti-E2 or anti-E1 antibodies with a lymphotropic HCV (SB strain). All of the hybridoma clones, except for a neutralizing antibody-producing hybridoma, could be infected with HCV and support virus replication for at least 8 weeks after infection. The VH sequences in the infected hybridomas had a significantly higher mutation frequency than those in the uninfected hybridomas, with mutations concentrating in complementarity-determining region 3. These mutations lowered the antibody affinity against the targeting protein and also lowered the virus-neutralizing activity of anti-E2 antibodies. Furthermore, antibody-mediated complement-dependent cytotoxicity with the antibodies secreted from the HCV-infected hybridomas was impaired. These results suggest that HCV infection could cause some anti-HCV-antibody-producing hybridoma B cells to make less-protective antibodies.


2021 ◽  
Vol 488 ◽  
pp. 112901 ◽  
Author(s):  
Rachael E. Whaley ◽  
Sarah Ameny ◽  
Tanvi Arkatkar ◽  
Aaron Seese ◽  
Abigail Wall ◽  
...  

2012 ◽  
Vol 19 (11) ◽  
pp. 1864-1869 ◽  
Author(s):  
Timothy Southern ◽  
Leah Bess ◽  
Jillian Harmon ◽  
Lacey Taylor ◽  
Harlan Caldwell

ABSTRACTChlamydia trachomatisis an obligate intracellular mucosotropic pathogen that causes human infections of global importance.C. trachomatiscauses trachoma, the leading cause of preventable blindness worldwide, and is the most common cause of bacterial sexually transmitted disease. Although oculogenital infections are treatable with antibiotics, a vaccine is needed to controlC. trachomatisinfection. Ideally, a vaccine would provide coverage against most, if not all, naturally occurring antigenically distinct serovariants. The development of a subunit vaccine to prevent oculogenital disease could be advanced by identifying chlamydial antigens that elicit pan-neutralizing antibodies, particularly among infected human populations of known risk factors. There is currently no objective high-throughputin vitroassay to screen human sera for neutralization to aid in identification of these antigens. This report describes an objective, high-throughputin vitroassay that measuresC. trachomatis-neutralizing antibodies. Antibody-mediated neutralization of chlamydial infection was performed in a 96-well microtiter format, and neutralization was quantified by immunostaining fixed cells followed by automated fluorometric analysis. This report shows that fluorometric analysis ofC. trachomatisinfection directly correlates to labor-intensive manual inclusion counts. Furthermore, this report shows that fluorometry can be used to identifyC. trachomatis serovar- and serocomplex-specific neutralization. This objective, high-throughput analysis of serum neutralization is amenable to epidemiological studies of human chlamydial infection, human clinical vaccine trials, and preclinical animal model experiments ofChlamydiainfection.


Sign in / Sign up

Export Citation Format

Share Document