The young-star gangs of the Galaxy

2021 ◽  
Vol 5 (7) ◽  
pp. 626-626
Author(s):  
Paul Woods
Keyword(s):  
2010 ◽  
Vol 6 (S272) ◽  
pp. 233-241
Author(s):  
Christopher J. Evans

AbstractOne of the challenges for stellar astrophysics is to reach the point at which we can undertake reliable spectral synthesis of unresolved populations in young, star-forming galaxies at high redshift. Here I summarise recent studies of massive stars in the Galaxy and Magellanic Clouds, which span a range of metallicities commensurate with those in high-redshift systems, thus providing an excellent laboratory in which to study the role of environment on stellar evolution. I also give an overview of observations of luminous supergiants in external galaxies out to a remarkable 6.7 Mpc, in which we can exploit our understanding of stellar evolution to study the chemistry and dynamics of the host systems.


2016 ◽  
Vol 594 ◽  
pp. A34 ◽  
Author(s):  
M. J. Rodríguez ◽  
G. Baume ◽  
C. Feinstein

1978 ◽  
Vol 80 ◽  
pp. 247-257
Author(s):  
Beatrice M. Tinsley

Baade (1944) based his concept of stellar populations in galaxies on the HR diagrams that he inferred from the magnitude at which their brightest stars could be resolved. His type I population had bright blue supergiants like those in the disk of the Milky Way, while the brightest stars in type II were the red giants found in globular clusters. He postulated that the Hubble sequence of galaxy types from irregulars to ellipticals contained increasing proportions of Population II relative to Population I, and that similar differences characterized nuclear bulges of spirals relative to their disks. A very important revision of this picture came with the discovery by Morgan and Mayall (1957; Morgan, 1956, 1959) that the integrated blue light of the nuclear bulges of M31 and the Galaxy is dominated by strong-lined CN giants, not by the weak-lined type found in globular clusters. On the basis of integrated spectra of galaxies, Morgan developed a revised population scheme, in which the extreme types are a young-star rich population, like Baade's extreme Population I, and a young-star deficient population, analogous to Population II but generally metal-rich. Different proportions of these two types are still thought to represent the main differences among stellar populations in different regions of galaxies.


2006 ◽  
Vol 54 ◽  
pp. 199-207 ◽  
Author(s):  
T Paumard ◽  
R Genzel ◽  
F Martins ◽  
S Nayakshin ◽  
A M Beloborodov ◽  
...  
Keyword(s):  

2019 ◽  
Vol 490 (1) ◽  
pp. 1186-1201 ◽  
Author(s):  
Andrew S Graus ◽  
James S Bullock ◽  
Alex Fitts ◽  
Michael C Cooper ◽  
Michael Boylan-Kolchin ◽  
...  

ABSTRACT We explore the radial variation of star formation histories (SFHs) in dwarf galaxies simulated with Feedback In Realistic Environments (FIRE) physics. The sample contains 26 field dwarf galaxies with Mstar = 105–109 M⊙. We find age gradients are common in our dwarfs, with older stars dominant at large radii. The strength of the gradient correlates with overall galaxy age such that earlier star formation produces a more pronounced gradient. The relation between formation time and strength of the gradient is driven by both mergers and star formation feedback. Mergers can both steepen and flatten the age gradient depending on the timing of the merger and SFHs of the merging galaxy. In galaxies without significant mergers, feedback pushes stars to the outskirts. The strength of the age gradient is determined by the subsequent evolution of the galaxy. Galaxies with weak age gradients constantly grow to z  = 0, meaning that young star formation occurs at a similar radius to which older stars are heated to. In contrast, galaxies with strong age gradients tend to maintain a constant half-mass radius over time. If real galaxies have age gradients as we predict, stellar population studies that rely on sampling a limited fraction of a galaxy can give a biased view of its global SFH. Central fields can be biased young by Gyrs while outer fields are biased old. Fields positioned near the 2D half-light radius will provide the least biased measure of a dwarf galaxy’s global SFH.


2003 ◽  
Vol 212 ◽  
pp. 720-721
Author(s):  
Joanna M. Hartwell ◽  
Ian R. Stevens ◽  
David K. Strickland ◽  
Timothy M. Heckman

We present results from a Chandra X-ray observation of the dwarf starburst galaxy NGC 4214, a galaxy containing several young star forming regions. Starburst regions are known to be associated with diffuse X-ray emission, and in this case X-ray emission from the galaxy shows an interesting morphological structure with a bright X-ray ring of emission within the galaxy.


2019 ◽  
Vol 491 (4) ◽  
pp. 5693-5701 ◽  
Author(s):  
Adebusola B Alabi ◽  
Duncan A Forbes ◽  
Aaron J Romanowsky ◽  
Jean P Brodie

ABSTRACT We study the globular clusters (GCs) in the spiral galaxy NGC 5907 well-known for its spectacular stellar stream – to better understand its origin. Using wide-field Subaru/Suprime-Cam gri images and deep Keck/DEIMOS multi-object spectroscopy, we identify and obtain the kinematics of several GCs superimposed on the stellar stream and the galaxy disc. We estimate the total number of GCs in NGC 5907 to be 154 ± 44, with a specific frequency of 0.73 ± 0.21. Our analysis also reveals a significant, new population of young star cluster candidates found mostly along the outskirts of the stellar disc. Using the properties of the stream GCs, we estimate that the disrupted galaxy has a stellar mass similar to the Sagittarius dwarf galaxy accreted by the Milky Way, i.e. $\sim 10^8~\rm M_\odot$.


2020 ◽  
Vol 640 ◽  
pp. A86
Author(s):  
M. Prišegen

Context. The population of Be/X-ray binaries shows strong evidence of bimodality, especially in the spin period of neutron stars. Several physical mechanisms may produce this bimodality. The most favored candidate mechanisms are two distinct supernova channels or different accretion modes of the neutron stars in Be/X-ray binaries. Investigating the kinematics of these systems may provide some additional insight into the physics of this bimodality. Aims. If the two Be/X-ray binary subpopulations arise from two distinct supernova types, then the two subpopulations should have different peculiar (systemic) velocities. This can be tested either directly, by measuring the velocity of the system, or indirectly, by measuring the position of the system with respect to its birthplace. A difference in the peculiar velocity magnitude between the subpopulations would favor the supernova hypothesis, and the lack of this difference would suggest that the accretion hypothesis is a more favorable option to explain the bimodality. Methods. Using the most recent Gaia dataset and the newest catalogs of Small Magellanic Cloud (SMC) star clusters, we analyzed the tangential peculiar velocities of Be/X-ray binaries in the Galaxy and the positions of Be/X-ray binaries in the SMC. We used the distance of the system from the nearest young star cluster as a proxy to the tangential velocity of the system. We applied statistical testing to investigate whether the two subpopulations that are divided by the spin of the neutron star are also kinematically distinct. Results. There is evidence that the two subpopulations are indeed kinematically distinct. However, the tangential peculiar velocities of the two subpopulations are the reverse from what is expected from the distinct supernova channel hypothesis. We find some marginal evidence (p ≈ 0.005) that the Galactic Be/X-ray binaries from the short-spin subpopulation have systematically higher peculiar velocities than the systems from the long-spin subpopulation. The same effect, but weaker, is also recovered for the SMC Be/X-ray binaries for all considered cluster catalogs. The unexpected difference in the peculiar velocities between the two subpopulations of Be/X-ray binaries contradicts these two hypotheses, and an alternative physical explanation for this may be needed.


1999 ◽  
Vol 193 ◽  
pp. 670-678 ◽  
Author(s):  
Henry A. Kobulnicky

The warm ionized gas in low-mass, metal-poor star forming galaxies is chemically homogeneous despite the prevalence of large H II regions which contain hundreds of evolved massive stars, supernovae, and Wolf-Rayet stars with chemically-enriched winds. Galaxies with large WR star content are chemically indistinguishable from other vigorously star-forming galaxies. Furthermore, no significant localized chemical fluctuations are present in the vicinity of young star clusters, despite large expected chemical yields of massive stars. An ad hoc fine-tuning of the release, dispersal and mixing of the massive star ejecta could give rise to the observed homogeneity, but a more probable explanation is that fresh ejecta from massive stars reside in a hard-to-observe hot or cold phase. In any case, the observed chemical homogeneity indicates that heavy elements which have already mixed with the warm interstellar medium (thus accessible to optical spectroscopy) are homogeneously dispersed over scales exceeding 1 kpc. Mixing of fresh ejecta with the surrounding warm ISM apparently requires longer than the lifetimes of typical H II regions (> 107 yr). The lack of observed localized chemical enrichments is consistent with a scenario whereby freshly-synthesized metals from massive stars are expelled into the halos of galaxies in a hot, 106 K phase by supernova-driven winds before they cool and ‘rain’ back down upon the galaxy, creating gradual enrichments on spatial scales >1 kpc.


2006 ◽  
Vol 643 (2) ◽  
pp. 1011-1035 ◽  
Author(s):  
T. Paumard ◽  
R. Genzel ◽  
F. Martins ◽  
S. Nayakshin ◽  
A. M. Beloborodov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document