scholarly journals Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies

Author(s):  
Max Callaghan ◽  
Carl-Friedrich Schleussner ◽  
Shruti Nath ◽  
Quentin Lejeune ◽  
Thomas R. Knutson ◽  
...  
2013 ◽  
Vol 17 (2) ◽  
pp. 619-635 ◽  
Author(s):  
N. Köplin ◽  
B. Schädler ◽  
D. Viviroli ◽  
R. Weingartner

Abstract. Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenarios were derived from ten regional climate models from the ENSEMBLES project. Their respective temperature and precipitation changes between the scenario period (2074–2095) and the control period (1984–2005) were used to run a hydrological model. The relative importance of each of the three types of scenarios (climate, glacier, forest) was assessed through an analysis of variance (ANOVA). Altogether, 15 mountainous catchments in Switzerland were analysed, exhibiting different degrees of glaciation during the control period (0–51%) and different degrees of forest cover increase under scenarios of change (12–55% of the catchment area). The results show that even an extreme change in forest cover is negligible with respect to changes in runoff, but it is crucial as soon as changes in evaporation or soil moisture are concerned. For the latter two variables, the relative impact of forest change is proportional to the magnitude of its change. For changes that concern 35% of the catchment area or more, the effect of forest change on summer evapotranspiration is equally or even more important than the climate signal. For catchments with a glaciation of 10% or more in the control period, the glacier retreat significantly determines summer and annual runoff. The most important source of uncertainty in this study, though, is the climate scenario and it is highly recommended to apply an ensemble of climate scenarios in the impact studies. The results presented here are valid for the climatic region they were tested for, i.e., a humid, mid-latitude mountainous environment. They might be different for regions where the evaporation is a major component of the water balance, for example. Nevertheless, a hydrological climate-impact study that assesses the additional impacts of forest and glacier change is new so far and provides insight into the question whether or not it is necessary to account for land cover changes as part of climate change impacts on hydrological systems.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 859 ◽  
Author(s):  
Winifred Ayinpogbilla Atiah ◽  
Leonard Kofitse Amekudzi ◽  
Jeffrey Nii Armah Aryee ◽  
Kwasi Preko ◽  
Sylvester Kojo Danuor

In regions of sparse gauge networks, satellite rainfall products are mostly used as surrogate measurements for various rainfall impact studies. Their potential to complement rain gauge measurements is influenced by the uncertainties associated with them. This study evaluates the performance of satellites and merged rainfall products over Ghana in order to provide information on the consistency and reliability of such products. Satellite products were validated with gridded rain gauge data from the Ghana Meteorological Agency (GMet) on various time scales. It was observed that the performance of the products in the country are mostly scale and location dependent. In addition, most of the products showed relatively good skills on the seasonal scale (r > 0.90) rather than the annual, and, after removal of seasonality from the datasets, except ARC2 that had larger biases in most cases. Again, all products captured the onsets, cessations, and spells countrywide and in the four agro-ecological zones. However, CHIRPS particularly revealed a better skill on both seasonal and annual scales countrywide. The products were not affected by the number of gauge stations within a grid cell in the Forest and Transition zones. This study, therefore, recommends all products except ARC2 for climate impact studies over the region.


2017 ◽  
Vol 12 (5) ◽  
pp. 054023 ◽  
Author(s):  
Stefan Siebert ◽  
Heidi Webber ◽  
Gang Zhao ◽  
Frank Ewert

2012 ◽  
Vol 9 (5) ◽  
pp. 5983-6021 ◽  
Author(s):  
N. Köplin ◽  
B. Schädler ◽  
D. Viviroli ◽  
R. Weingartner

Abstract. Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenarios consist of ten regional climate models from the ENSEMBLES project; their respective temperature and precipitation deltas are used to run a hydrological model. The relative importance of each of the three types of scenarios (climate, glacier, forest) is assessed through an analysis of variance (ANOVA). Altogether, 15 mountainous catchments in Switzerland are analysed, exhibiting different degrees of glaciation during the control period (0–51%) and different degrees of forest cover increase under scenarios of change (12–55% of the catchment area). The results show that even an extreme change in forest cover is negligible with respect to changes in runoff, but it is crucial as soon as evaporation or soil moisture is concerned. For the latter two variables, the relative impact of forest change is proportional to the magnitude of its change. For changes that concern 35% of the catchment area or more, the effect of forest change on summer evapotranspiration is equally or even more important than the climate signal. For catchment with a glaciation of 10% or more in the control period, the glacier retreat significantly determines summer and annual runoff. The most important source of uncertainty in hydrological climate impact studies is the climate scenario, though, and it is highly recommended to apply an ensemble of climate scenarios in impact studies. The results presented here are valid for the climatic region they were tested for, i.e. a humid, mid-latitude mountainous environment. They might be different for regions where the evaporation is a major component of the water balance, for example. Nevertheless, a hydrological climate-impact study that assesses the additional impacts of forest and glacier change is new so far and provides insight into the question whether or not it is necessary to account for land cover changes as part of climate change impacts on hydrological systems.


Author(s):  
Eva Sebok ◽  
Hans Jørgen Henriksen ◽  
Ernesto Pastén-Zapata ◽  
Peter Berg ◽  
Guillume Thirel ◽  
...  

2006 ◽  
Vol 326 (1-4) ◽  
pp. 1-24 ◽  
Author(s):  
Mohamed Ezzat Elshamy ◽  
Howard S. Wheater ◽  
Nicola Gedney ◽  
Chris Huntingford

Sign in / Sign up

Export Citation Format

Share Document