scholarly journals Long-range supercurrents through a chiral non-collinear antiferromagnet in lateral Josephson junctions

2021 ◽  
Author(s):  
Kun-Rok Jeon ◽  
Binoy Krishna Hazra ◽  
Kyungjune Cho ◽  
Anirban Chakraborty ◽  
Jae-Chun Jeon ◽  
...  

AbstractThe proximity-coupling of a chiral non-collinear antiferromagnet (AFM)1–5 with a singlet superconductor allows spin-unpolarized singlet Cooper pairs to be converted into spin-polarized triplet pairs6–8, thereby enabling non-dissipative, long-range spin correlations9–14. The mechanism of this conversion derives from fictitious magnetic fields that are created by a non-zero Berry phase15 in AFMs with non-collinear atomic-scale spin arrangements1–5. Here we report long-ranged lateral Josephson supercurrents through an epitaxial thin film of the triangular chiral AFM Mn3Ge (refs. 3–5). The Josephson supercurrents in this chiral AFM decay by approximately one to two orders of magnitude slower than would be expected for singlet pair correlations9–14 and their response to an external magnetic field reflects a clear spatial quantum interference. Given the long-range supercurrents present in both single- and mixed-phase Mn3Ge, but absent in a collinear AFM IrMn16, our results pave a way for the topological generation of spin-polarized triplet pairs6–8 via Berry phase engineering15 of the chiral AFMs.

2001 ◽  
Vol 86 (18) ◽  
pp. 4132-4135 ◽  
Author(s):  
D. Wortmann ◽  
S. Heinze ◽  
Ph. Kurz ◽  
G. Bihlmayer ◽  
S. Blügel

1975 ◽  
Vol 13 (5) ◽  
pp. 385-388 ◽  
Author(s):  
John M. Blatt ◽  
Alex H. Opie

2012 ◽  
Vol 109 (9) ◽  
Author(s):  
Anika Schlenhoff ◽  
Stefan Krause ◽  
Andreas Sonntag ◽  
Roland Wiesendanger
Keyword(s):  

2007 ◽  
Vol 360 (3) ◽  
pp. 486-490 ◽  
Author(s):  
Pei Wang ◽  
Wei-hua Tang ◽  
Ding-hui Lu ◽  
Lixia Jiang ◽  
Xuean Zhao

1991 ◽  
Vol 231 ◽  
Author(s):  
R. Wiesendanger ◽  
D. Buergler ◽  
G. Tarrach ◽  
I.V. Shvets ◽  
H.-J. Guentherodt

AbstractWe report on a novel promising technique for the investigation of magnetic structures at surfaces at high spatial resolution, ultimately down to the atomic scale. This technique is based on the observation of vacuum tunneling of spin-polarized electrons by means of a scanning tunneling microscope (STM). We discuss appropriate probe tips for the spin-polarized STM (SPSTM) and describe initial experimental results. We further focus on the information obtained by SPSTM. Finally, the perspectives of SPSTM will be discussed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmet Avsar ◽  
Cheol-Yeon Cheon ◽  
Michele Pizzochero ◽  
Mukesh Tripathi ◽  
Alberto Ciarrocchi ◽  
...  

Abstract Atomic-scale disorder in two-dimensional transition metal dichalcogenides is often accompanied by local magnetic moments, which can conceivably induce long-range magnetic ordering into intrinsically non-magnetic materials. Here, we demonstrate the signature of long-range magnetic orderings in defective mono- and bi-layer semiconducting PtSe2 by performing magnetoresistance measurements under both lateral and vertical measurement configurations. As the material is thinned down from bi- to mono-layer thickness, we observe a ferromagnetic-to-antiferromagnetic crossover, a behavior which is opposite to the one observed in the prototypical 2D magnet CrI3. Our first-principles calculations, supported by aberration-corrected transmission electron microscopy imaging of point defects, associate this transition to the interplay between the defect-induced magnetism and the interlayer interactions in PtSe2. Furthermore, we show that graphene can be effectively used to probe the magnetization of adjacent semiconducting PtSe2. Our findings in an ultimately scaled monolayer system lay the foundation for atom-by-atom engineering of magnetism in otherwise non-magnetic 2D materials.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1072-1073
Author(s):  
F. Paraguay D ◽  
M. Miki-Yoshida ◽  
F. Espinosa-Magaña ◽  
E. Terrés ◽  
J.M. Dominguez

Zeolites are crystalline aluminosilicates possessing a regular microporous channel network. Unique properties of zeolites such as the presence of framework cations, acid sites, and their well-defined porous structure-with pore sizes similar to those of small molecules-account for their traditional utilization in ion exchange, catalysis, and separation. in addition, zeolites are being investigated for novel emerging applications in a diversity of areas including optoelectronic devices and reactive membranes because they provide for discrimination, recognition, and organization of molecules with a precision of less 1 Å. However, their applications are limited by the relatively small pore openings; therefore, pore enlargement was one of the main aspects in zeolite chemistry. A new class of porous materials, which contain large uniform spaces in the mesopore size regimen (15-100 Å), was reported. These so-called mesoporous materials have two different characters, disorder at the atomic scale but long range order at the atomic scale but long range order at the mesoscopic scale.


Sign in / Sign up

Export Citation Format

Share Document