Radiocarbon age is just a number

2021 ◽  
Vol 17 (12) ◽  
pp. 1432-1432
Author(s):  
Adam J. Fleisher
Keyword(s):  
2017 ◽  
Vol 35 (8) ◽  
pp. 728-736 ◽  
Author(s):  
Michael S. Krzemnicki ◽  
Laurent E. Cartier ◽  
Irka Hajdas
Keyword(s):  

2012 ◽  
Vol 361-362 ◽  
pp. 49-60 ◽  
Author(s):  
Timothy M. Shanahan ◽  
J. Warren Beck ◽  
Jonathan T. Overpeck ◽  
Nicholas P. McKay ◽  
Jeffrey S. Pigati ◽  
...  

Radiocarbon ◽  
2021 ◽  
pp. 1-14
Author(s):  
Evelyn M Keaveney ◽  
Gerard T Barrett ◽  
Kerry Allen ◽  
Paula J Reimer

ABSTRACT The Belfast Ramped Pyroxidation/Combustion (RPO/RC) facility was established at the 14CHRONO Centre (Queen’s University Belfast). The facility was created to provide targeted analysis of bulk material for refined chronological analysis and carbon source attribution for a range of sample types. Here we report initial RPO results, principally on background material, but also including secondary standards that are routinely analyzed at 14CHRONO. A description of our setup, methodology, and background (blank) correction method for the system are provided. The backgrounds (anthracite, spar calcite, Pargas marble) reported by the system are in excess of 35,000 14C years BP with a mean age of 39,345 14C years BP (1σ = 36,497–43,800 years BP, N=44) with F14C = 0.0075 ± 0.0032. Initial results for standards are also in good agreement with consensus values: TIRI-B pine radiocarbon age = 4482 ± 47 years BP (N=13, consensus = 4508 years BP); IAEA-C6 ANU Sucrose F14C= 1.5036 ± 0.0034 (N=10, consensus F14C = 1.503). These initial tests have allowed problematic issues to be identified and improvements made for future analyses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pascal Bohleber ◽  
Margit Schwikowski ◽  
Martin Stocker-Waldhuber ◽  
Ling Fang ◽  
Andrea Fischer

AbstractDetailed knowledge of Holocene climate and glaciers dynamics is essential for sustainable development in warming mountain regions. Yet information about Holocene glacier coverage in the Alps before the Little Ice Age stems mostly from studying advances of glacier tongues at lower elevations. Here we present a new approach to reconstructing past glacier low stands and ice-free conditions by assessing and dating the oldest ice preserved at high elevations. A previously unexplored ice dome at Weißseespitze summit (3500 m), near where the “Tyrolean Iceman” was found, offers almost ideal conditions for preserving the original ice formed at the site. The glaciological settings and state-of-the-art micro-radiocarbon age constraints indicate that the summit has been glaciated for about 5900 years. In combination with known maximum ages of other high Alpine glaciers, we present evidence for an elevation gradient of neoglaciation onset. It reveals that in the Alps only the highest elevation sites remained ice-covered throughout the Holocene. Just before the life of the Iceman, high Alpine summits were emerging from nearly ice-free conditions, during the start of a Mid-Holocene neoglaciation. We demonstrate that, under specific circumstances, the old ice at the base of high Alpine glaciers is a sensitive archive of glacier change. However, under current melt rates the archive at Weißseespitze and at similar locations will be lost within the next two decades.


Antiquity ◽  
1997 ◽  
Vol 71 (272) ◽  
pp. 430-437 ◽  
Author(s):  
Richard Gillespie

Minute biological traces, with their prospect of recovering even ancient DNA, are the most attractive of archaeological materials to work with. This supplementary report on field studies of rock-art first published in ANTIQUITY further explores how these studies may in truth be carried out.


2008 ◽  
Vol 252 (3-4) ◽  
pp. 111-119 ◽  
Author(s):  
Rodolfo José Angulo ◽  
Maria Cristina de Souza ◽  
Mario Luis Assine ◽  
Luiz Carlos Ruiz Pessenda ◽  
Sibelle Trevisan Disaró

1998 ◽  
Vol 50 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Stephen C. Porter ◽  
Terry W. Swanson

Calibrated radiocarbon dates of organic matter below and above till of the last (Fraser) glaciation provide limiting ages that constrain the chronology and duration of the last advance–retreat cycle of the Puget Lobe in the central and southeastern Puget Lowland. Seven dates for wood near the top of a thick proglacial delta have a weighted mean age of 17,420 ± 90 cal yr B.P., which is the closest limiting age for arrival of the glacier near the latitude of Seattle. A time–distance curve constructed along a flowline extending south from southwestern British Columbia to the central Puget Lowland implies an average glacier advance rate of ca. 135 m/yr. The glacier terminus reached its southernmost limit ca. 16,950 yr ago and likely remained there for ca. 100 yr. In the vicinity of Seattle, where the glacier reached a maximum thickness of 1000 m, ice covered the landscape for ca. 1020 yr. Postglacial dates constraining the timing of ice retreat in the central lowland are as old as 16,420 cal yr B.P. and show that the terminus had retreated to the northern limit of the lowland within three to four centuries after the glacial maximum. The average rate of retreat was about twice the rate of advance and was enhanced by rapid calving recession along flowline sectors where the glacier front crossed deep proglacial lakes.


Radiocarbon ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 489-503 ◽  
Author(s):  
E Zazovskaya ◽  
N Mergelov ◽  
V Shishkov ◽  
A Dolgikh ◽  
V Miamin ◽  
...  

AbstractThis article discusses radiocarbon dating results for soils and soil-like systems in the East Antarctic oases, including Schirmacher, Thala Hills, and Larsemann Hills. The organic matter of endolithic and hypolithic systems, soils of wind shelters, and soils under moss-algae vegetation were dated along with micro- and macroprofiles. Organic matter pools formed under extreme climatic conditions and originated not from vascular plants but from cryptogamic organisms, and photoautotrophic microbes have been identified within the oases of the East Antarctica. The organic matter of the most of East Antarctic soils is young and cannot reach a steady state because of the high dynamism in the soil cover due to active erosion. The oldest soil organic matter in East Antarctica was found in the soils formed in wind shelters and endolithic soil-like systems under the protection of consolidated rock surfaces. According to our data, the maximal duration for the formation of organic matter profiles within the oases of East Antarctica is ~500 yr, which is similar to the age determined for High Arctic soils in Eurasia. The absence of older soils, comparable with the Holocene deglaciation, can be due to the extreme conditions resulting in occasional catastrophic events that destroyed the soil organic horizons.


Sign in / Sign up

Export Citation Format

Share Document