blank correction
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

Radiocarbon ◽  
2021 ◽  
pp. 1-14
Author(s):  
Evelyn M Keaveney ◽  
Gerard T Barrett ◽  
Kerry Allen ◽  
Paula J Reimer

ABSTRACT The Belfast Ramped Pyroxidation/Combustion (RPO/RC) facility was established at the 14CHRONO Centre (Queen’s University Belfast). The facility was created to provide targeted analysis of bulk material for refined chronological analysis and carbon source attribution for a range of sample types. Here we report initial RPO results, principally on background material, but also including secondary standards that are routinely analyzed at 14CHRONO. A description of our setup, methodology, and background (blank) correction method for the system are provided. The backgrounds (anthracite, spar calcite, Pargas marble) reported by the system are in excess of 35,000 14C years BP with a mean age of 39,345 14C years BP (1σ = 36,497–43,800 years BP, N=44) with F14C = 0.0075 ± 0.0032. Initial results for standards are also in good agreement with consensus values: TIRI-B pine radiocarbon age = 4482 ± 47 years BP (N=13, consensus = 4508 years BP); IAEA-C6 ANU Sucrose F14C= 1.5036 ± 0.0034 (N=10, consensus F14C = 1.503). These initial tests have allowed problematic issues to be identified and improvements made for future analyses.


2021 ◽  
Author(s):  
Gesine Mollenhauer ◽  
Hendrik Grotheer ◽  
Elizabeth Bonk ◽  
Torben Gentz

<p>Foraminifera isolated from deep-sea sediments are among the most common materials in AMS radiocarbon analysis. These results are used to determine accurate age models for sediment sequences as well as to detect changes in deep-sea ventilation. Often, only small numbers of (monospecific) foraminifera shells can be isolated, in particular when studying benthic species in sediments from the polar regions. Therefore, these samples are often analyzed as CO<sub>2</sub> gas using MICADAS instruments, and the method can typically be used for samples of up to around 40 ka in age. For reliable results, an accurate determination and minimization of processing blanks is required.</p><p>Processing blanks for foraminifera samples may in part derive from acid hydrolysis of the carbonates. It has, however, been shown that contamination of the carbonate fossils, mainly from atmospheric CO<sub>2</sub> adsorbed on the porous surfaces of foraminifera, is the largest source of blank found in foraminifera samples. The removal of such contamination has been attempted by various leaching methods, which come at the risk of introducing additional contaminations. Alternatively, blank correction of AMS results may be achieved using fossil foraminifera from ancient deposits much beyond the range of the radiocarbon method.</p><p>Here we report results of a systematic test comparing the F<sup>14</sup>C levels obtained for fossil (>130 ka) and sub-modern monospecific planktic and benthic foraminifera samples using different blank correction approaches. Specifically, we compare leaching with dilute hydrochloric acid, blank correction relative to a leached and an un-leached fossil foraminifera standard, and blank correction relative to the IAEA-C1 certified carbonate standard. </p>


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Chintha Lankatillake ◽  
Shiqi Luo ◽  
Matthew Flavel ◽  
George Binh Lenon ◽  
Harsharn Gill ◽  
...  

Abstract Background Enzyme assays have widespread applications in drug discovery from plants to natural products. The appropriate use of blanks in enzyme assays is important for assay baseline-correction, and the correction of false signals associated with background matrix interferences. However, the blank-correction procedures reported in published literature are highly inconsistent. We investigated the influence of using different types of blanks on the final calculated activity/inhibition results for three enzymes of significance in diabetes and obesity; α-glucosidase, α-amylase, and lipase. This is the first study to examine how different blank-correcting methods affect enzyme assay results. Although assays targeting the above enzymes are common in the literature, there is a scarcity of detailed published protocols. Therefore, we have provided comprehensive, step-by-step protocols for α-glucosidase-, α-amylase- and lipase-inhibition assays that can be performed in 96-well format in a simple, fast, and resource-efficient manner with clear instructions for blank-correction and calculation of results. Results In the three assays analysed here, using only a buffer blank underestimated the enzyme inhibitory potential of the test sample. In the absorbance-based α-glucosidase assay, enzyme inhibition was underestimated when a sample blank was omitted for the coloured plant extracts. Similarly, in the fluorescence-based α-amylase and lipase assays, enzyme inhibition was underestimated when a substrate blank was omitted. For all three assays, method six [Raw Data - (Substrate + Sample Blank)] enabled the correction of interferences due to the buffer, sample, and substrate without double-blanking, and eliminated the need to add substrate to each sample blank. Conclusion The choice of blanks and blank-correction methods contribute to the variability of assay results and the likelihood of underestimating the enzyme inhibitory potential of a test sample. This highlights the importance of standardising the use of blanks and the reporting of blank-correction procedures in published studies in order to ensure the accuracy and reproducibility of results, and avoid overlooked opportunities in drug discovery research due to inadvertent underestimation of enzyme inhibitory potential of test samples resulting from unsuitable blank-correction. Based on our assessments, we recommend method six [RD − (Su + SaB)] as a suitable method for blank-correction of raw data in enzyme assays.


Radiocarbon ◽  
2019 ◽  
Vol 61 (5) ◽  
pp. 1403-1411 ◽  
Author(s):  
M L Roberts ◽  
K L Elder ◽  
W J Jenkins ◽  
A R Gagnon ◽  
L Xu ◽  
...  

ABSTRACTReplicate radiocarbon (14C) measurements of organic and inorganic control samples, with known Fraction Modern values in the range Fm = 0–1.5 and mass range 6 μg–2 mg carbon, are used to determine both the mass and radiocarbon content of the blank carbon introduced during sample processing and measurement in our laboratory. These data are used to model, separately for organic and inorganic samples, the blank contribution and subsequently “blank correct” measured unknowns in the mass range 25–100 μg. Data, formulas, and an assessment of the precision and accuracy of the blank correction are presented.


Author(s):  
John Keenan Taylor
Keyword(s):  

2015 ◽  
Vol 87 (21) ◽  
pp. 10724-10727 ◽  
Author(s):  
Enea Pagliano ◽  
Zoltán Mester ◽  
Juris Meija

Radiocarbon ◽  
2015 ◽  
Vol 57 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Sunita R Shah Walter ◽  
Alan R Gagnon ◽  
Mark L Roberts ◽  
Ann P McNichol ◽  
Mary C Lardie Gaylord ◽  
...  

In response to the increasing demand for 14C analysis of samples containing less than 25 μg C, ultra-small graphitization reactors with an internal volume of ∼0.8 mL were developed at NOSAMS. For samples containing 6 to 25 μg C, these reactors convert CO2 to graphitic carbon in approximately 30 min. Although we continue to refine reaction conditions to improve yield, the reactors produce graphite targets that are successfully measured by AMS. Graphite targets produced with the ultra-small reactors are measured by using the Cs sputter source on the CFAMS instrument at NOSAMS where beam current was proportional to sample mass. We investigated the contribution of blank carbon from the ultra-small reactors and estimate it to be 0.3 ± 0.1 μg C with an Fm value of 0.43 ± 0.3. We also describe equations for blank correction and propagation of error associated with this correction. With a few exceptions for samples in the range of 6 to 7 μg C, we show that corrected Fm values agree with expected Fm values within uncertainty for samples containing 6–100 μg C.


Sign in / Sign up

Export Citation Format

Share Document