Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion

2021 ◽  
Vol 21 (5) ◽  
pp. 298-312
Author(s):  
Suchit Jhunjhunwala ◽  
Christian Hammer ◽  
Lélia Delamarre
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jonathan D. Licht ◽  
Richard L. Bennett

Abstract Background Epigenetic mechanisms regulate chromatin accessibility patterns that govern interaction of transcription machinery with genes and their cis-regulatory elements. Mutations that affect epigenetic mechanisms are common in cancer. Because epigenetic modifications are reversible many anticancer strategies targeting these mechanisms are currently under development and in clinical trials. Main body Here we review evidence suggesting that epigenetic therapeutics can deactivate immunosuppressive gene expression or reprogram tumor cells to activate antigen presentation mechanisms. In addition, the dysregulation of epigenetic mechanisms commonly observed in cancer may alter the immunogenicity of tumor cells and effectiveness of immunotherapies. Conclusions Therapeutics targeting epigenetic mechanisms may be helpful to counter immune evasion and improve the effectiveness of immunotherapies.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii5-ii5
Author(s):  
Michael Castro ◽  
Nilofar Badra-Azar ◽  
Thomas Kessler ◽  
Moritz Schütte ◽  
Bodo Lange ◽  
...  

Abstract BACKGROUND Despite the success of immunotherapy across the spectrum of human cancer, a successful strategy has not emerged for GBM. While PD-L1 IHC and TMB have demonstrated some utility as predictors of immunotherapy benefit, responsiveness is complexly determined by factors affecting T cell trafficking, antigen presentation, other immune checkpoints, and mediators of immune exhaustion. Thus, we set out to to characterize mediators of immune resistance and their diversity in a population of GBM patients utilizing quantitative gene expression. METHODS A set of 54 immunotherapy and checkpoint relevant genes and seven genes related to immune failure were selected from the literature. RNA gene counts for TCGA glioblastoma multiforme samples (N=163) were downloaded from https://portal.gdc.cancer.gov/. Annotation on subtypes and PFS values were obtained from PMID: 24120142. Gene expression normalization as FPKM, hierarchical clustering and box-plots were performed using R-3.6.0. Statistical differences of gene expression between subtypes were quantified using a TurkeyHSD test. RESULTS A heatmap with hierarchical clustering for immune related genes for the TCGA GBM cohort was generated including colored annotation for the subtype and progression free survival. The graph shows a rough separation into two groups, where one group of the genes is tentatively associated with mesenchymal subtype and shorter survival and showing higher expression for most immune evasion genes. However, a heterogeneity of immune evasion signatures was identified within and across subtypes. Transcripts related to antigen presentation, EZH2, and LDHA varied significantly between GBM subtypes (p < 0.05). CONCLUSION Gene expression analysis has utility to identify specific mediators of immune evasion and to inform the selection of combination therapies for discrete subsets of patients. A Bayesian approach to patient selection for specific immunotherapy strategies may enhance the likelihood of successful implementation of immunotherapy in the clinic.


2015 ◽  
Vol 27 (2) ◽  
pp. 125-137 ◽  
Author(s):  
Michael L. van de Weijer ◽  
Rutger D. Luteijn ◽  
Emmanuel J.H.J. Wiertz

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 603-603
Author(s):  
Simona Pagliuca ◽  
Carmelo Gurnari ◽  
Colin Hercus ◽  
Niroshan Nadarajah ◽  
Adam Wahida ◽  
...  

Abstract The pathogenesis of idiopathic aplastic anemia (IAA) involves a human leukocyte antigen (HLA)-restricted T-cell autoreactivity against unknown antigens preferentially distributed on early hematopoietic stem and progenitor cells (HSPCs). Genetically acquired GPI-anchor and HLA deficiency have been both linked to clonal immune evasion from T-cell pressure. We hypothesized that, in analogy to anti-tumor adaptive immune evasion, pathophysiology of immune escape in IAA originates together with a broader dysfunction of antigen presentation/processing machinery and immune regulatory proteins, beyond HLA molecules, as an effect of immune pressure under T-cell attack. This initial immune reaction would produce up-modulation of these pathways, ultimately promoting the acquisition of mutations and expansion of immune resistant clones. To test this hypothesis, we first performed single-cell RNAseq analysis in HSPCs in IAA patients at disease manifestation, 1 which showed signatures of dysfunction of antigen presentation machinery, with up-regulation of most of the HLA molecules, proteasome subunits and endoplasmic reticulum related organelle transporters. Strikingly, DRB1 was among the top 3 genes upregulated in IAA patients compared to controls (q-values 1.23E-35; Fig.1A), underscoring the etiological impact that antigen presentation via this locus has in the initiation of autoimmune process. Mild upregulation was also seen in DQB1 and B loci (q-values 4.7E-07 and 2.1E-10, respectively). We then studied molecular escape mechanisms by genotyping 204 IAA and PNH patients, with either a targeted or whole genome sequencing (WGS) platform. By application of a newly in-house developed bioinformatic pipeline, we detected somatic aberrations in HLA region involving both class I and II alleles in 36% of IAA patients including point mutations, frameshift insertions or deletions and copy number variations inducing allelic loss. B*14:02 and A*02:01 emerged as the most commonly mutated class I alleles with a few hotspot mutations identified, particularly in exon 1 (c.19C>T, p.R7X, Fig.1B,C), confirming previous reports. 2,3 In class II, DQB1 and DPA1 loci were frequently targeted by fine mutational events, while more complex allelic loss phenomena interested prevalently DRB1 and DQB1 loci. Those aberrations were identified at diagnosis (35%), during disease follow-up (33%) or at the time of malignant evolution (27%), with higher clonal size in specimens collected during the course of the disease (median VAF 3% [2-27%] at diagnosis, 8% [2-98%] at follow-up, and 2.2% [2.0-6.1%] at evolution). Of 41 patients with at least one HLA aberration and characterized with an extended genotypic study, only 6 harbored also >1 somatic myeloid mutation (14%), versus 30/90 (33%) not affected by somatic hits in HLA (p=.026; Fig.1D). HLA aberrant cases also showed lower number of somatic myeloid mutations (OR=0.44; p=.0262) with driver hits rarely present (Fig.1E). In terms of PIGA mutations, an increased PIGA mosaicism was observed in the HLA mutant group, underlying that both processes have similar pathophysiologic origin as a product of the immune selection pressure (OR: 1.55 [95%CI 1.1-4.2], p=.0201). We then investigated, through WGS of 53 patients, the presence of somatic mutations in other immune genes which could be triggered by immune pressure. Hence, in 47% of the cases we were able to find pathogenic or likely pathogenic hits in genes encompassing proteasome complex, vesicle trafficking, transactivators and interferon regulatory factors, including CREBBP, TAP1, CIITA, PSMC5, PSMB4 and IRF9 (Fig.1F), whose pathogenicity was computationally assessed through recently implemented somatic classifiers. 4 Those hits were not mutually exclusive neither with HLA nor with PIGA mutations, however their VAF was significantly lower compared to concurrent HLA and PIGA lesions, underscoring their lower driver potential within the immune escape environment compared to PNH and HLA-lacking clones. Altogether our results describe the diversity of molecular and immune events taking place in IAA and PNH. Our study suggests that following initial immune insult, clonal architecture of residual hematopoiesis can be dominated by multiple modes of immune escape, agonistically participating to a mechanism of "adaptive" clonal recovery, likely in opposition to the "maladaptive" malignant progression. Figure 1 Figure 1. Disclosures Maciejewski: Alexion: Consultancy; Regeneron: Consultancy; Novartis: Consultancy; Bristol Myers Squibb/Celgene: Consultancy.


Cancer Cell ◽  
2019 ◽  
Vol 36 (4) ◽  
pp. 385-401.e8 ◽  
Author(s):  
Marian L. Burr ◽  
Christina E. Sparbier ◽  
Kah Lok Chan ◽  
Yih-Chih Chan ◽  
Ariena Kersbergen ◽  
...  

2003 ◽  
Vol 77 (1) ◽  
pp. 301-308 ◽  
Author(s):  
Diane M. LoPiccolo ◽  
Marielle C. Gold ◽  
Daniel G. Kavanagh ◽  
Markus Wagner ◽  
Ulrich H. Koszinowski ◽  
...  

ABSTRACT Macrophages play an important role in murine cytomegalovirus (MCMV) infection in vivo, both in disseminating infection and in harboring latent virus. MCMV encodes three immune evasion genes (m4, m6, and m152) that interfere with the ability of cytotoxic T cells (CTL) to detect virus-infected fibroblasts, but the efficacy of immune evasion in macrophages has been controversial. Here we show that MCMV immune evasion genes function in H-2b primary bone marrow macrophages (BMMφ) in the same way that they do in fibroblasts. Metabolic labeling experiments showed that class I is retained in the endoplasmic reticulum by MCMV infection and associates with m4/gp34 to a similar extent in fibroblasts and BMMφ. We tested a series of Kb- and Db-restricted CTL clones specific for MCMV early genes against a panel of MCMV wild-type virus and mutants lacking m152, m4, or m6. MCMV immune evasion genes effectively inhibited antigen presentation. m152 appeared sufficient to abolish Db-restricted presentation in infected macrophages, as has been previously observed in infected fibroblasts. However, for inhibition of recognition of infected macrophages by Kb-restricted CTL, m4, m6, and m152 were all required. The contribution of m4 to inhibition of recognition appeared much more important in macrophages than in fibroblasts. Thus, MCMV immune evasion genes function effectively in primary macrophages to prevent CTL recognition of early antigens and show the same pattern of major histocompatibility complex class I allele discrimination as is seen in fibroblasts. Furthermore, for inhibition of Kb-restricted presentation, a strong synergistic effect was noted among m152, m4, and m6.


2021 ◽  
pp. clincanres.2049.2021
Author(s):  
Yajing Gao ◽  
Pekka J.P. Päivinen ◽  
Sushil Tripathi ◽  
Eva Domenech-Moreno ◽  
Iris Poh Ling P.L. Wong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document