Applications of organoids in regenerative medicine: a proof-of-concept for biliary injury

Author(s):  
Pedro M. Rodrigues ◽  
Jesus M. Banales
2021 ◽  
pp. 088391152199640
Author(s):  
Renata Aquino de Carvalho ◽  
Valmir Vieira Rocha Júnior ◽  
Antonio José Felix Carvalho ◽  
Heloisa Sobreiro Selistre de Araújo ◽  
Mônica Rosas Costa Iemma ◽  
...  

Bone regenerative medicine (BRM) aims to overcome the limitations of conventional treatments for critical bone defects by developing therapeutic strategies, based on temporary bioactive substitutes, capable of stimulating, sustaining, and guiding tissue regeneration. The aim of this study was to validate the “proof of concept” of a cellularized bioactive scaffold and establish its potential for use in BRM. For this purpose, three-dimensional scaffolds of poly-(lactic acid) (PLA), produced by the additive manufacturing technique, were incorporated into a human platelet-rich plasma (PRP-h) fibrin matrix containing human infrapatellar fat pad mesenchymal stem cells (hIFPMSC). The scaffolds (PLA/finbrin-bioactive) were kept under ideal culture conditions in a medium free from fetal bovine serum and analyzed at 5 and 10 days by Scanning Electron Microscopy (SEM), Fourrier Transform Infrared (FTIR), Circular Dichroism and fluorescence microscopy. The results demonstrated the feasibility of obtaining a rigid, cytocompatible, and cellularized three-dimensional structure. In addition, PRP platelets and leukocytes were able to provide a bioactive environment capable of maintaining the viability of hIFPMSC into scaffolds. The results validate the concept of a customizable, bioactive, cellularized, and non-immunogenic strategy for application in BRM.


2020 ◽  
Vol 12 (572) ◽  
pp. eaaz2253
Author(s):  
James P. K. Armstrong ◽  
Timothy J. Keane ◽  
Anne C. Roques ◽  
P. Stephen Patrick ◽  
Claire M. Mooney ◽  
...  

The past few decades have produced a large number of proof-of-concept studies in regenerative medicine. However, the route to clinical adoption is fraught with technical and translational obstacles that frequently consign promising academic solutions to the so-called “valley of death.” Here, we present a proposed blueprint for translational regenerative medicine. We offer principles to help guide the selection of cells and materials, present key in vivo imaging modalities, and argue that the host immune response should be considered throughout design and development. Last, we suggest a pathway to navigate the often complex regulatory and manufacturing landscape of translational regenerative medicine.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Stephen L. Rego ◽  
Cheryl Burrell ◽  
Melissa Nielsen ◽  
Tatjana Grove ◽  
Amritha Kidiyoor ◽  
...  

Here, we are proposing and testing the use of literature reviews as a method to identify essential competencies for specific fields. This has implications in how educators develop and structure both traditional and competency based curricula. Our focus will be on utilizing this method to identify the most relevant and commonly used techniques in the field of regenerative medicine. This publication review method may be used to develop competency based education (CBE) programs that focus on commonly utilized skills. CBE is an emerging trend in higher education that will greatly enhance student learning experiences. CBE works by providing students with field specific skills and knowledge; thus, it is imperative for educators to identify the most essential competencies in a given field. Therefore, we reason that a literature review of the techniques performed in studies published in prevalent peer reviewed journals for a given field offers an ideal method to identify and rank competencies that should be delivered to students by a respective curriculum. Here, we reviewed recent articles published on topics in the field of regenerative medicine as a proof of concept for the use of literature reviews as a guide for the development of a regenerative medicine CBE curriculum.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


2002 ◽  
Author(s):  
Sheri Yvonne Nottestad Boyd ◽  
Linda L. Huffer ◽  
Terry D. Bauch ◽  
James L. Furgerson

2020 ◽  
Vol 92 (1) ◽  
pp. 10906
Author(s):  
Jeroen Schoenmaker ◽  
Pâmella Gonçalves Martins ◽  
Guilherme Corsi Miranda da Silva ◽  
Julio Carlos Teixeira

Organic Rankine Cycle (ORC) systems are increasingly gaining relevance in the renewable and sustainable energy scenario. Recently our research group published a manuscript identifying a new type of thermodynamic cycle entitled Buoyancy Organic Rankine Cycle (BORC) [J. Schoenmaker, J.F.Q. Rey, K.R. Pirota, Renew. Energy 36, 999 (2011)]. In this work we present two main contributions. First, we propose a refined thermodynamic model for BORC systems accounting for the specific heat of the working fluid. Considering the refined model, the efficiencies for Pentane and Dichloromethane at temperatures up to 100 °C were estimated to be 17.2%. Second, we show a proof of concept BORC system using a 3 m tall, 0.062 m diameter polycarbonate tube as a column-fluid reservoir. We used water as a column fluid. The thermal stability and uniformity throughout the tube has been carefully simulated and verified experimentally. After the thermal parameters of the water column have been fully characterized, we developed a test body to allow an adequate assessment of the BORC-system's efficiency. We obtained 0.84% efficiency for 43.8 °C working temperature. This corresponds to 35% of the Carnot efficiency calculated for the same temperature difference. Limitations of the model and the apparatus are put into perspective, pointing directions for further developments of BORC systems.


2012 ◽  
Vol 25 (01) ◽  
Author(s):  
A Klein ◽  
G Shafirstein ◽  
E Kohl ◽  
W Bäumler ◽  
M Landthaler ◽  
...  

Author(s):  
FV Güttler ◽  
K Winterwerber ◽  
C Gross ◽  
A Heinrich ◽  
M de Bucourt ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document