scholarly journals Author Correction: Soil carbon loss by experimental warming in a tropical forest

Nature ◽  
2020 ◽  
Vol 586 (7831) ◽  
pp. E32-E32
Author(s):  
Andrew T. Nottingham ◽  
Patrick Meir ◽  
Esther Velasquez ◽  
Benjamin L. Turner
Nature ◽  
2020 ◽  
Vol 584 (7820) ◽  
pp. 234-237 ◽  
Author(s):  
Andrew T. Nottingham ◽  
Patrick Meir ◽  
Esther Velasquez ◽  
Benjamin L. Turner

2019 ◽  
Vol 22 (11) ◽  
pp. 1889-1899 ◽  
Author(s):  
Andrew T. Nottingham ◽  
Jeanette Whitaker ◽  
Nick J. Ostle ◽  
Richard D. Bardgett ◽  
Niall P. McNamara ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 734
Author(s):  
Xiankai Lu ◽  
Qinggong Mao ◽  
Zhuohang Wang ◽  
Taiki Mori ◽  
Jiangming Mo ◽  
...  

Anthropogenic elevated nitrogen (N) deposition has an accelerated terrestrial N cycle, shaping soil carbon dynamics and storage through altering soil organic carbon mineralization processes. However, it remains unclear how long-term high N deposition affects soil carbon mineralization in tropical forests. To address this question, we established a long-term N deposition experiment in an N-rich lowland tropical forest of Southern China with N additions such as NH4NO3 of 0 (Control), 50 (Low-N), 100 (Medium-N) and 150 (High-N) kg N ha−1 yr−1, and laboratory incubation experiment, used to explore the response of soil carbon mineralization to the N additions therein. The results showed that 15 years of N additions significantly decreased soil carbon mineralization rates. During the incubation period from the 14th day to 56th day, the average decreases in soil CO2 emission rates were 18%, 33% and 47% in the low-N, medium-N and high-N treatments, respectively, compared with the Control. These negative effects were primarily aroused by the reduced soil microbial biomass and modified microbial functions (e.g., a decrease in bacteria relative abundance), which could be attributed to N-addition-induced soil acidification and potential phosphorus limitation in this forest. We further found that N additions greatly increased soil-dissolved organic carbon (DOC), and there were significantly negative relationships between microbial biomass and soil DOC, indicating that microbial consumption on soil-soluble carbon pool may decrease. These results suggests that long-term N deposition can increase soil carbon stability and benefit carbon sequestration through decreased carbon mineralization in N-rich tropical forests. This study can help us understand how microbes control soil carbon cycling and carbon sink in the tropics under both elevated N deposition and carbon dioxide in the future.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 880
Author(s):  
Andrey Sirin ◽  
Alexander Maslov ◽  
Dmitry Makarov ◽  
Yakov Gulbe ◽  
Hans Joosten

Forest-peat fires are notable for their difficulty in estimating carbon losses. Combined carbon losses from tree biomass and peat soil were estimated at an 8 ha forest-peat fire in the Moscow region after catastrophic fires in 2010. The loss of tree biomass carbon was assessed by reconstructing forest stand structure using the classification of pre-fire high-resolution satellite imagery and after-fire ground survey of the same forest classes in adjacent areas. Soil carbon loss was assessed by using the root collars of stumps to reconstruct the pre-fire soil surface and interpolating the peat characteristics of adjacent non-burned areas. The mean (median) depth of peat losses across the burned area was 15 ± 8 (14) cm, varying from 13 ± 5 (11) to 20 ± 9 (19). Loss of soil carbon was 9.22 ± 3.75–11.0 ± 4.96 (mean) and 8.0–11.0 kg m−2 (median); values exceeding 100 tC ha−1 have also been found in other studies. The estimated soil carbon loss for the entire burned area, 98 (mean) and 92 (median) tC ha−1, significantly exceeds the carbon loss from live (tree) biomass, which averaged 58.8 tC ha−1. The loss of carbon in the forest-peat fire thus equals the release of nearly 400 (soil) and, including the biomass, almost 650 tCO2 ha−1 into the atmosphere, which illustrates the underestimated impact of boreal forest-peat fires on atmospheric gas concentrations and climate.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0121432 ◽  
Author(s):  
Emilie R. Kirk ◽  
Chris van Kessel ◽  
William R. Horwath ◽  
Bruce A. Linquist

2017 ◽  
Author(s):  
Ting Liu ◽  
Liang Wang ◽  
Xiaojuan Feng ◽  
Jinbo Zhang ◽  
Tian Ma ◽  
...  

Abstract. Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and Qinghai-Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced transient increase of soil respiration, equivalent to 32 % and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290 %, 120 % and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with re-occuring EPEs in the soil with the highest pH due to increased dissolution of soil carbonates and elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight that leaching loss of soil carbon (particularly DIC) is important in the regional carbon budget of arid and semiarid grasslands. With a projected increase of EPEs under climate change, soil carbon leaching processes and its influencing factors warrant better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.


2019 ◽  
Vol 12 (8) ◽  
pp. 627-631 ◽  
Author(s):  
César Plaza ◽  
Elaine Pegoraro ◽  
Rosvel Bracho ◽  
Gerardo Celis ◽  
Kathryn G. Crummer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document